Cargando…
Detecting Structural Change Point in ARMA Models via Neural Network Regression and LSCUSUM Methods
This study considers the change point testing problem in autoregressive moving average (ARMA) [Formula: see text] models through the location and scale-based cumulative sum (LSCUSUM) method combined with neural network regression (NNR). We estimated the model parameters via the NNR method based on t...
Autores principales: | Ri, Xi-hame, Chen, Zhanshou, Liang, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857603/ https://www.ncbi.nlm.nih.gov/pubmed/36673274 http://dx.doi.org/10.3390/e25010133 |
Ejemplares similares
-
Bayesian change-point modeling with segmented ARMA model
por: Sadia, Farhana, et al.
Publicado: (2018) -
Linear models and time-series analysis: regression, anova, arma and garch
por: Paolella, Marc S
Publicado: (2018) -
Primeras armas /
por: Arredondo, Arturo
Publicado: (1999) -
Armas antárticas /
por: Miramontes Zuázola, Juan de, 1600
Publicado: (1978) -
Detecting Multiple Change Points Using Adaptive Regression Splines With Application to Neural Recordings
por: Toutounji, Hazem, et al.
Publicado: (2018)