Cargando…
Double Model Following Adaptive Control for a Complex Dynamical Network
This paper formulates and solves a new problem of the double model following adaptive control (MFAC) of nodes and links in a complex dynamical network (CDN). This is different from most existing studies on CDN and MFAC. Inspired by the concept of composite systems, the CDN with dynamic links is rega...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857604/ https://www.ncbi.nlm.nih.gov/pubmed/36673256 http://dx.doi.org/10.3390/e25010115 |
Sumario: | This paper formulates and solves a new problem of the double model following adaptive control (MFAC) of nodes and links in a complex dynamical network (CDN). This is different from most existing studies on CDN and MFAC. Inspired by the concept of composite systems, the CDN with dynamic links is regarded as an interconnected system composed of an interconnected node group (NG) and link group (LG). Guided by the above-mentioned new idea of viewing a CDN from the perspective of composite systems, by means of Lyapunov theory and proposed related mathematical preliminaries, a new adaptive control scheme is proposed for NG. In addition, to remove the restriction that the states of links in a CDN are unavailable due to physical constraints, technical restraints, and expensive measurement costs, we synthesize the coupling term in LG with the proposed adaptive control scheme for NG, such that the problem of double MFAC of nodes and links in CDN is solved. Finally, a simulation example is presented to verify the theoretical results. |
---|