Cargando…
Asymmetric Adaptive LDPC-Based Information Reconciliation for Industrial Quantum Key Distribution
We develop a new approach for asymmetric LDPC-based information reconciliation in order to adapt to the current channel state and achieve better performance and scalability in practical resource-constrained QKD systems. The new scheme combines the advantages of LDPC codes, a priori error rate estima...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857619/ https://www.ncbi.nlm.nih.gov/pubmed/36673171 http://dx.doi.org/10.3390/e25010031 |
Sumario: | We develop a new approach for asymmetric LDPC-based information reconciliation in order to adapt to the current channel state and achieve better performance and scalability in practical resource-constrained QKD systems. The new scheme combines the advantages of LDPC codes, a priori error rate estimation, rate-adaptive and blind information reconciliation techniques. We compare the performance of several asymmetric and symmetric error correction schemes using a real industrial QKD setup. The proposed asymmetric algorithm achieves significantly higher throughput, providing a secret key rate that is close to the symmetric one in a wide range of error rates. Thus, our approach is found to be particularly efficient for applications with high key rates, limited classical channel capacity and asymmetric computational resource allocation. |
---|