Cargando…

GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion

Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jinxin, Xi, Xiaoli, Li, Dongmei, Li, Fang, Zhang, Guanxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857638/
https://www.ncbi.nlm.nih.gov/pubmed/36673310
http://dx.doi.org/10.3390/e25010169
Descripción
Sumario:Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignoring global dependencies and channel contexts. This paper proposes GRPAFusion, a multimodal image fusion framework based on gradient residual and pyramid attention. The framework uses multiscale gradient residual blocks to extract multiscale structural features and multigranularity detail features from the source image. The depth features from different modalities were adaptively corrected for inter-channel responses using a pyramid split attention module to generate high-quality fused images. Experimental results on public datasets indicated that GRPAFusion outperforms the current fusion methods in subjective and objective evaluations.