Cargando…

GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion

Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jinxin, Xi, Xiaoli, Li, Dongmei, Li, Fang, Zhang, Guanxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857638/
https://www.ncbi.nlm.nih.gov/pubmed/36673310
http://dx.doi.org/10.3390/e25010169
_version_ 1784873913431359488
author Wang, Jinxin
Xi, Xiaoli
Li, Dongmei
Li, Fang
Zhang, Guanxin
author_facet Wang, Jinxin
Xi, Xiaoli
Li, Dongmei
Li, Fang
Zhang, Guanxin
author_sort Wang, Jinxin
collection PubMed
description Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignoring global dependencies and channel contexts. This paper proposes GRPAFusion, a multimodal image fusion framework based on gradient residual and pyramid attention. The framework uses multiscale gradient residual blocks to extract multiscale structural features and multigranularity detail features from the source image. The depth features from different modalities were adaptively corrected for inter-channel responses using a pyramid split attention module to generate high-quality fused images. Experimental results on public datasets indicated that GRPAFusion outperforms the current fusion methods in subjective and objective evaluations.
format Online
Article
Text
id pubmed-9857638
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98576382023-01-21 GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion Wang, Jinxin Xi, Xiaoli Li, Dongmei Li, Fang Zhang, Guanxin Entropy (Basel) Article Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignoring global dependencies and channel contexts. This paper proposes GRPAFusion, a multimodal image fusion framework based on gradient residual and pyramid attention. The framework uses multiscale gradient residual blocks to extract multiscale structural features and multigranularity detail features from the source image. The depth features from different modalities were adaptively corrected for inter-channel responses using a pyramid split attention module to generate high-quality fused images. Experimental results on public datasets indicated that GRPAFusion outperforms the current fusion methods in subjective and objective evaluations. MDPI 2023-01-14 /pmc/articles/PMC9857638/ /pubmed/36673310 http://dx.doi.org/10.3390/e25010169 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Jinxin
Xi, Xiaoli
Li, Dongmei
Li, Fang
Zhang, Guanxin
GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion
title GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion
title_full GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion
title_fullStr GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion
title_full_unstemmed GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion
title_short GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion
title_sort grpafusion: a gradient residual and pyramid attention-based multiscale network for multimodal image fusion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857638/
https://www.ncbi.nlm.nih.gov/pubmed/36673310
http://dx.doi.org/10.3390/e25010169
work_keys_str_mv AT wangjinxin grpafusionagradientresidualandpyramidattentionbasedmultiscalenetworkformultimodalimagefusion
AT xixiaoli grpafusionagradientresidualandpyramidattentionbasedmultiscalenetworkformultimodalimagefusion
AT lidongmei grpafusionagradientresidualandpyramidattentionbasedmultiscalenetworkformultimodalimagefusion
AT lifang grpafusionagradientresidualandpyramidattentionbasedmultiscalenetworkformultimodalimagefusion
AT zhangguanxin grpafusionagradientresidualandpyramidattentionbasedmultiscalenetworkformultimodalimagefusion