Cargando…
Feature Selection in High-Dimensional Models via EBIC with Energy Distance Correlation
In this paper, the LASSO method with extended Bayesian information criteria (EBIC) for feature selection in high-dimensional models is studied. We propose the use of the energy distance correlation in place of the ordinary correlation coefficient to measure the dependence of two variables. The energ...
Autores principales: | Ocloo, Isaac Xoese, Chen, Hanfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857644/ https://www.ncbi.nlm.nih.gov/pubmed/36673154 http://dx.doi.org/10.3390/e25010014 |
Ejemplares similares
-
Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays
por: Powell, Kaden M., et al.
Publicado: (2020) -
Electron Bio-Imaging Centre (eBIC): the UK national research facility for biological electron microscopy
por: Clare, Daniel K., et al.
Publicado: (2017) -
Long Noncoding RNA-EBIC Promotes Tumor Cell Invasion by Binding to EZH2 and Repressing E-Cadherin in Cervical Cancer
por: Sun, Ning-xia, et al.
Publicado: (2014) -
Distance Correlation-Based Feature Selection in Random Forest
por: Ratnasingam, Suthakaran, et al.
Publicado: (2023) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020)