Cargando…

A Conway–Maxwell–Poisson-Binomial AR(1) Model for Bounded Time Series Data

Binomial autoregressive models are frequently used for modeling bounded time series counts. However, they are not well developed for more complex bounded time series counts of the occurrence of n exchangeable and dependent units, which are becoming increasingly common in practice. To fill this gap,...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Huaping, Zhang, Jiayue, Liu, Xiufang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857646/
https://www.ncbi.nlm.nih.gov/pubmed/36673267
http://dx.doi.org/10.3390/e25010126
Descripción
Sumario:Binomial autoregressive models are frequently used for modeling bounded time series counts. However, they are not well developed for more complex bounded time series counts of the occurrence of n exchangeable and dependent units, which are becoming increasingly common in practice. To fill this gap, this paper first constructs an exchangeable Conway–Maxwell–Poisson-binomial (CMPB) thinning operator and then establishes the Conway–Maxwell–Poisson-binomial AR (CMPBAR) model. We establish its stationarity and ergodicity, discuss the conditional maximum likelihood (CML) estimate of the model’s parameters, and establish the asymptotic normality of the CML estimator. In a simulation study, the boxplots illustrate that the CML estimator is consistent and the qqplots show the asymptotic normality of the CML estimator. In the real data example, our model takes a smaller AIC and BIC than its main competitors.