Cargando…
Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images
This paper focuses on the ultimate limit theory of image compression. It proves that for an image source, there exists a coding method with shapes that can achieve the entropy rate under a certain condition where the shape-pixel ratio in the encoder/decoder is [Formula: see text]. Based on the new f...
Autores principales: | Xin, Gangtao, Fan, Pingyi, Letaief, Khaled B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857653/ https://www.ncbi.nlm.nih.gov/pubmed/36673189 http://dx.doi.org/10.3390/e25010048 |
Ejemplares similares
-
Soft Compression for Lossless Image Coding Based on Shape Recognition
por: Xin, Gangtao, et al.
Publicado: (2021) -
Towards Efficient Federated Learning: Layer-Wise Pruning-Quantization Scheme and Coding Design
por: Zhu, Zheqi, et al.
Publicado: (2023) -
Robust, practical and comprehensive analysis of soft compression image coding algorithms for big data
por: Xin, Gangtao, et al.
Publicado: (2023) -
A lossless compression method for multi-component medical images based on big data mining
por: Xin, Gangtao, et al.
Publicado: (2021) -
EXK-SC: A Semantic Communication Model Based on Information Framework Expansion and Knowledge Collision
por: Xin, Gangtao, et al.
Publicado: (2022)