Cargando…
Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking
The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer wal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857710/ https://www.ncbi.nlm.nih.gov/pubmed/36661519 http://dx.doi.org/10.3390/cimb45010033 |
_version_ | 1784873928335818752 |
---|---|
author | Lin, Zhiyu Wei, Cheng Pei, Jinfeng Li, Haixing |
author_facet | Lin, Zhiyu Wei, Cheng Pei, Jinfeng Li, Haixing |
author_sort | Lin, Zhiyu |
collection | PubMed |
description | The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer walker primer (OWP), are involved in bridging PCR. The BP is fabricated by splicing OWP to the 5′-end of IWP’s 5′-part. A bridging PCR set is constituted by three rounds of amplification reactions, sequentially performed by IWP, BP plus OWP, and OWP, respectively pairing with three nested sequence-specific primers (SSP). A non-target product arising from IWP alone undergoes end-lengthening mediated by BP. This modified non-target product is a preferentially formed hairpin between the lengthened ends, instead of binding with shorter OWP. Meanwhile, a non-target product, triggered by SSP alone or SSP plus IWP, is removed by nested SSP. As a result, only the target DNA is accumulated. The efficacy of bridging PCR was validated by walking the gadA/R genes of Levilactobacillus brevis CD0817 and the hyg gene of rice. |
format | Online Article Text |
id | pubmed-9857710 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98577102023-01-21 Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking Lin, Zhiyu Wei, Cheng Pei, Jinfeng Li, Haixing Curr Issues Mol Biol Article The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer walker primer (OWP), are involved in bridging PCR. The BP is fabricated by splicing OWP to the 5′-end of IWP’s 5′-part. A bridging PCR set is constituted by three rounds of amplification reactions, sequentially performed by IWP, BP plus OWP, and OWP, respectively pairing with three nested sequence-specific primers (SSP). A non-target product arising from IWP alone undergoes end-lengthening mediated by BP. This modified non-target product is a preferentially formed hairpin between the lengthened ends, instead of binding with shorter OWP. Meanwhile, a non-target product, triggered by SSP alone or SSP plus IWP, is removed by nested SSP. As a result, only the target DNA is accumulated. The efficacy of bridging PCR was validated by walking the gadA/R genes of Levilactobacillus brevis CD0817 and the hyg gene of rice. MDPI 2023-01-05 /pmc/articles/PMC9857710/ /pubmed/36661519 http://dx.doi.org/10.3390/cimb45010033 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lin, Zhiyu Wei, Cheng Pei, Jinfeng Li, Haixing Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking |
title | Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking |
title_full | Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking |
title_fullStr | Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking |
title_full_unstemmed | Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking |
title_short | Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking |
title_sort | bridging pcr: an efficient and reliable scheme implemented for genome-walking |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857710/ https://www.ncbi.nlm.nih.gov/pubmed/36661519 http://dx.doi.org/10.3390/cimb45010033 |
work_keys_str_mv | AT linzhiyu bridgingpcranefficientandreliableschemeimplementedforgenomewalking AT weicheng bridgingpcranefficientandreliableschemeimplementedforgenomewalking AT peijinfeng bridgingpcranefficientandreliableschemeimplementedforgenomewalking AT lihaixing bridgingpcranefficientandreliableschemeimplementedforgenomewalking |