Cargando…
Self-Supervised Node Classification with Strategy and Actively Selected Labeled Set
To alleviate the impact of insufficient labels in less-labeled classification problems, self-supervised learning improves the performance of graph neural networks (GNNs) by focusing on the information of unlabeled nodes. However, none of the existing self-supervised pretext tasks perform optimally o...
Autores principales: | Kang, Yi, Liu, Ke, Cao, Zhiyuan, Zhang, Jiacai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857737/ https://www.ncbi.nlm.nih.gov/pubmed/36673172 http://dx.doi.org/10.3390/e25010030 |
Ejemplares similares
-
Self-Supervised Learning Methods for Label-Efficient Dental Caries Classification
por: Taleb, Aiham, et al.
Publicado: (2022) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring
por: Hur, Cheong-Hwan, et al.
Publicado: (2022) -
Self-Supervised Steering and Path Labeling for Autonomous Driving
por: Mihalea, Andrei, et al.
Publicado: (2023) -
Semi-supervised multi-label collective classification ensemble for functional genomics
por: Wu, Qingyao, et al.
Publicado: (2014)