Cargando…
Forecasting for Chaotic Time Series Based on GRP-lstmGAN Model: Application to Temperature Series of Rotary Kiln
Rotary kiln temperature forecasting plays a significant part of the automatic control of the sintering process. However, accurate forecasts are difficult owing to the complex nonlinear characteristics of rotary kiln temperature time series. With the development of chaos theory, the prediction accura...
Autores principales: | Hu, Wenyu, Mao, Zhizhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857759/ https://www.ncbi.nlm.nih.gov/pubmed/36673193 http://dx.doi.org/10.3390/e25010052 |
Ejemplares similares
-
Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting
por: Meng, Xiangyi, et al.
Publicado: (2021) -
LSTM-Based VAE-GAN for Time-Series Anomaly Detection
por: Niu, Zijian, et al.
Publicado: (2020) -
Time series forecasting of COVID-19 transmission in Canada using LSTM networks()
por: Chimmula, Vinay Kumar Reddy, et al.
Publicado: (2020) -
Advanced Process Control for Clinker Rotary Kiln and Grate Cooler †
por: Zanoli, Silvia Maria, et al.
Publicado: (2023) -
An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model
por: Lv, Jiehua, et al.
Publicado: (2021)