Cargando…
Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics
Dengue fever, also known as break-bone fever, can be life-threatening. Caused by DENV, an RNA virus from the Flaviviridae family, dengue is currently a globally important public health problem. The clinical methods available for dengue diagnosis require skilled supervision. They are manual, time-con...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857931/ https://www.ncbi.nlm.nih.gov/pubmed/36673030 http://dx.doi.org/10.3390/diagnostics13020220 |
_version_ | 1784873971733233664 |
---|---|
author | Mayrose, Hilda Bairy, G. Muralidhar Sampathila, Niranjana Belurkar, Sushma Saravu, Kavitha |
author_facet | Mayrose, Hilda Bairy, G. Muralidhar Sampathila, Niranjana Belurkar, Sushma Saravu, Kavitha |
author_sort | Mayrose, Hilda |
collection | PubMed |
description | Dengue fever, also known as break-bone fever, can be life-threatening. Caused by DENV, an RNA virus from the Flaviviridae family, dengue is currently a globally important public health problem. The clinical methods available for dengue diagnosis require skilled supervision. They are manual, time-consuming, labor-intensive, and not affordable to common people. This paper describes a method that can support clinicians during dengue diagnosis. It is proposed to automate the peripheral blood smear (PBS) examination using Artificial Intelligence (AI) to aid dengue diagnosis. Nowadays, AI, especially Machine Learning (ML), is increasingly being explored for successful analyses in the biomedical field. Digital pathology coupled with AI holds great potential in developing healthcare services. The automation system developed incorporates a blob detection method to detect platelets and thrombocytopenia from the PBS images. The results achieved are clinically acceptable. Moreover, an ML-based technique is proposed to detect dengue from the images of PBS based on the lymphocyte nucleus. Ten features are extracted, including six morphological and four Gray Level Spatial Dependance Matrix (GLSDM) features, out of the lymphocyte nucleus of normal and dengue cases. Features are then subjected to various popular supervised classifiers built using a ten-fold cross-validation policy for automated dengue detection. Among all the classifiers, the best performance was achieved by Support Vector Machine (SVM) and Decision Tree (DT), each with an accuracy of 93.62%. Furthermore, 1000 deep features extracted using pre-trained MobileNetV2 and 177 textural features extracted using Local binary pattern (LBP) from the lymphocyte nucleus are subjected to feature selection. The ReliefF selected 100 most significant features are then fed to the classifiers. The best performance was attained using an SVM classifier with 95.74% accuracy. With the obtained results, it is evident that this proposed approach can efficiently contribute as an adjuvant tool for diagnosing dengue from the digital microscopic images of PBS. |
format | Online Article Text |
id | pubmed-9857931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98579312023-01-21 Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics Mayrose, Hilda Bairy, G. Muralidhar Sampathila, Niranjana Belurkar, Sushma Saravu, Kavitha Diagnostics (Basel) Article Dengue fever, also known as break-bone fever, can be life-threatening. Caused by DENV, an RNA virus from the Flaviviridae family, dengue is currently a globally important public health problem. The clinical methods available for dengue diagnosis require skilled supervision. They are manual, time-consuming, labor-intensive, and not affordable to common people. This paper describes a method that can support clinicians during dengue diagnosis. It is proposed to automate the peripheral blood smear (PBS) examination using Artificial Intelligence (AI) to aid dengue diagnosis. Nowadays, AI, especially Machine Learning (ML), is increasingly being explored for successful analyses in the biomedical field. Digital pathology coupled with AI holds great potential in developing healthcare services. The automation system developed incorporates a blob detection method to detect platelets and thrombocytopenia from the PBS images. The results achieved are clinically acceptable. Moreover, an ML-based technique is proposed to detect dengue from the images of PBS based on the lymphocyte nucleus. Ten features are extracted, including six morphological and four Gray Level Spatial Dependance Matrix (GLSDM) features, out of the lymphocyte nucleus of normal and dengue cases. Features are then subjected to various popular supervised classifiers built using a ten-fold cross-validation policy for automated dengue detection. Among all the classifiers, the best performance was achieved by Support Vector Machine (SVM) and Decision Tree (DT), each with an accuracy of 93.62%. Furthermore, 1000 deep features extracted using pre-trained MobileNetV2 and 177 textural features extracted using Local binary pattern (LBP) from the lymphocyte nucleus are subjected to feature selection. The ReliefF selected 100 most significant features are then fed to the classifiers. The best performance was attained using an SVM classifier with 95.74% accuracy. With the obtained results, it is evident that this proposed approach can efficiently contribute as an adjuvant tool for diagnosing dengue from the digital microscopic images of PBS. MDPI 2023-01-06 /pmc/articles/PMC9857931/ /pubmed/36673030 http://dx.doi.org/10.3390/diagnostics13020220 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mayrose, Hilda Bairy, G. Muralidhar Sampathila, Niranjana Belurkar, Sushma Saravu, Kavitha Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics |
title | Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics |
title_full | Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics |
title_fullStr | Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics |
title_full_unstemmed | Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics |
title_short | Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics |
title_sort | machine learning-based detection of dengue from blood smear images utilizing platelet and lymphocyte characteristics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857931/ https://www.ncbi.nlm.nih.gov/pubmed/36673030 http://dx.doi.org/10.3390/diagnostics13020220 |
work_keys_str_mv | AT mayrosehilda machinelearningbaseddetectionofdenguefrombloodsmearimagesutilizingplateletandlymphocytecharacteristics AT bairygmuralidhar machinelearningbaseddetectionofdenguefrombloodsmearimagesutilizingplateletandlymphocytecharacteristics AT sampathilaniranjana machinelearningbaseddetectionofdenguefrombloodsmearimagesutilizingplateletandlymphocytecharacteristics AT belurkarsushma machinelearningbaseddetectionofdenguefrombloodsmearimagesutilizingplateletandlymphocytecharacteristics AT saravukavitha machinelearningbaseddetectionofdenguefrombloodsmearimagesutilizingplateletandlymphocytecharacteristics |