Cargando…
Strong Generalized Speech Emotion Recognition Based on Effective Data Augmentation
The absence of labeled samples limits the development of speech emotion recognition (SER). Data augmentation is an effective way to address sample sparsity. However, there is a lack of research on data augmentation algorithms in the field of SER. In this paper, the effectiveness of classical acousti...
Autores principales: | Tao, Huawei, Shan, Shuai, Hu, Ziyi, Zhu, Chunhua, Ge, Hongyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857941/ https://www.ncbi.nlm.nih.gov/pubmed/36673208 http://dx.doi.org/10.3390/e25010068 |
Ejemplares similares
-
Effects of Data Augmentations on Speech Emotion Recognition
por: Atmaja, Bagus Tris, et al.
Publicado: (2022) -
Multi-Stream Convolution-Recurrent Neural Networks Based on Attention Mechanism Fusion for Speech Emotion Recognition
por: Tao, Huawei, et al.
Publicado: (2022) -
Multimodal transformer augmented fusion for speech emotion recognition
por: Wang, Yuanyuan, et al.
Publicado: (2023) -
Vector learning representation for generalized speech emotion recognition
por: Singkul, Sattaya, et al.
Publicado: (2022) -
An Augmented Sample Selection Framework for Prediction of Anticancer Peptides
por: Tao, Huawei, et al.
Publicado: (2023)