Cargando…
Vision-Transformer-Based Transfer Learning for Mammogram Classification
Breast mass identification is a crucial procedure during mammogram-based early breast cancer diagnosis. However, it is difficult to determine whether a breast lump is benign or cancerous at early stages. Convolutional neural networks (CNNs) have been used to solve this problem and have provided usef...
Autores principales: | Ayana, Gelan, Dese, Kokeb, Dereje, Yisak, Kebede, Yonas, Barki, Hika, Amdissa, Dechassa, Husen, Nahimiya, Mulugeta, Fikadu, Habtamu, Bontu, Choe, Se-Woon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857963/ https://www.ncbi.nlm.nih.gov/pubmed/36672988 http://dx.doi.org/10.3390/diagnostics13020178 |
Ejemplares similares
-
Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging
por: Ayana, Gelan, et al.
Publicado: (2021) -
Low cost, non-invasive, and continuous vital signs monitoring device for pregnant women in low resource settings (Lvital device)
por: Dese, Kokeb, et al.
Publicado: (2022) -
BUViTNet: Breast Ultrasound Detection via Vision Transformers
por: Ayana, Gelan, et al.
Publicado: (2022) -
De-Speckling Breast Cancer Ultrasound Images Using a Rotationally Invariant Block Matching Based Non-Local Means (RIBM-NLM) Method
por: Ayana, Gelan, et al.
Publicado: (2022) -
Patchless Multi-Stage Transfer Learning for Improved Mammographic Breast Mass Classification
por: Ayana, Gelan, et al.
Publicado: (2022)