Cargando…
CAMR: cross-aligned multimodal representation learning for cancer survival prediction
MOTIVATION: Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary i...
Autores principales: | Wu, Xingqi, Shi, Yi, Wang, Minghui, Li, Ao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857974/ https://www.ncbi.nlm.nih.gov/pubmed/36637188 http://dx.doi.org/10.1093/bioinformatics/btad025 |
Ejemplares similares
-
Draft Genome Sequences of Geobacillus sp. Strains CAMR5420 and CAMR12739
por: De Maayer, Pieter, et al.
Publicado: (2014) -
HFBSurv: hierarchical multimodal fusion with factorized bilinear models for cancer survival prediction
por: Li, Ruiqing, et al.
Publicado: (2022) -
Multimodal representation learning for predicting molecule–disease relations
por: Wen, Jun, et al.
Publicado: (2023) -
Pancancer survival prediction using a deep learning architecture with multimodal representation and integration
por: Fan, Ziling, et al.
Publicado: (2023) -
Deep learning with multimodal representation for pancancer prognosis prediction
por: Cheerla, Anika, et al.
Publicado: (2019)