Cargando…
Downregulation of Peroxidase Activity of Platinum Cube Enables Minute–Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring
Due to its unique biological composition, aquatic products, especially fish, are extremely perishable compared to other muscle products. Herein, we proposed an artificial nanozyme-based colorimetric detection of hypoxanthine (Hx), the indicator of fish freshness, in a minute–time scale without the a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858192/ https://www.ncbi.nlm.nih.gov/pubmed/36673383 http://dx.doi.org/10.3390/foods12020291 |
Sumario: | Due to its unique biological composition, aquatic products, especially fish, are extremely perishable compared to other muscle products. Herein, we proposed an artificial nanozyme-based colorimetric detection of hypoxanthine (Hx), the indicator of fish freshness, in a minute–time scale without the assistance of a natural enzyme (hypoxanthine oxidase). The principle is based on the interaction between Hx and polyvinylpyrrolidone-modified platinum cubic nanomaterials (PVP-PtNC), in which the catalytic active sites of PVP-PtNC’s surface were blocked by Hx. This causes the downregulation of PVP-PtNC’s catalytic ability and weakened its ability to catalyze the oxidization of 3,3′,5,5′-Tetramethylbenzidine (TMB) by H(2)O(2). Accordingly, the decrease in the UV–vis absorption and the weakening of the colorimetric reaction color is proportional to the Hx concentration. On this basis, a target-triggered colorimetric method for detecting Hx is developed for fish freshness monitoring with a fast detection speed, low cost, high accuracy, and simplified operation. Experiments reveal that the correlation response of Hx is from 0.5 μM to 10 mM with a limit of detection of 0.16 μM. In particular, the Hx detected from real fish indicates that the method possesses a promising potential for practical application. All of these features are expected to promote the development of online detection tools for food safety monitoring. |
---|