Cargando…
A Conceptual Multi-Layer Framework for the Detection of Nighttime Pedestrian in Autonomous Vehicles Using Deep Reinforcement Learning
The major challenge faced by autonomous vehicles today is driving through busy roads without getting into an accident, especially with a pedestrian. To avoid collision with pedestrians, the vehicle requires the ability to communicate with a pedestrian to understand their actions. The most challengin...
Autores principales: | Farooq, Muhammad Shoaib, Khalid, Haris, Arooj, Ansif, Umer, Tariq, Asghar, Aamer Bilal, Rasheed, Jawad, Shubair, Raed M., Yahyaoui, Amani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858197/ https://www.ncbi.nlm.nih.gov/pubmed/36673276 http://dx.doi.org/10.3390/e25010135 |
Ejemplares similares
-
Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review
por: Galvao, Luiz G., et al.
Publicado: (2021) -
Screening Lung Diseases Using Cascaded Feature Generation and Selection Strategies
por: Rasheed, Jawad, et al.
Publicado: (2022) -
Effect of Signal Design of Autonomous Vehicle Intention Presentation on Pedestrians’ Cognition
por: Wu, Chih-Fu, et al.
Publicado: (2022) -
Efficient Pedestrian Detection at Nighttime Using a Thermal Camera
por: Baek, Jeonghyun, et al.
Publicado: (2017) -
Communication between Autonomous Vehicles and Pedestrians: An Experimental Study Using Virtual Reality
por: Zhanguzhinova, Symbat, et al.
Publicado: (2023)