Cargando…

Suppressing Decoherence in Quantum State Transfer with Unitary Operations

Decoherence is the fundamental obstacle limiting the performance of quantum information processing devices. The problem of transmitting a quantum state (known or unknown) from one place to another is of great interest in this context. In this work, by following the recent theoretical proposal, we st...

Descripción completa

Detalles Bibliográficos
Autores principales: Gavreev, Maxim A., Kiktenko, Evgeniy O., Mastiukova, Alena S., Fedorov, Aleksey K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858199/
https://www.ncbi.nlm.nih.gov/pubmed/36673212
http://dx.doi.org/10.3390/e25010067
Descripción
Sumario:Decoherence is the fundamental obstacle limiting the performance of quantum information processing devices. The problem of transmitting a quantum state (known or unknown) from one place to another is of great interest in this context. In this work, by following the recent theoretical proposal, we study an application of quantum state-dependent pre- and post-processing unitary operations for protecting the given (multi-qubit) quantum state against the effect of decoherence acting on all qubits. We observe the increase in the fidelity of the output quantum state both in a quantum emulation experiment, where all protecting unitaries are perfect, and in a real experiment with a cloud-accessible quantum processor, where protecting unitaries themselves are affected by the noise. We expect the considered approach to be useful for analyzing capabilities of quantum information processing devices in transmitting known quantum states. We also demonstrate the applicability of the developed approach for suppressing decoherence in the process of distributing a two-qubit state over remote physical qubits of a quantum processor.