Cargando…
Lightweight Separable Convolution Network for Breast Cancer Histopathological Identification
Breast cancer is one of the leading causes of death among women worldwide. Histopathological images have proven to be a reliable way to find out if someone has breast cancer over time, however, it could be time consuming and require much resources when observed physically. In order to lessen the bur...
Autores principales: | Nneji, Grace Ugochi, Monday, Happy Nkanta, Mgbejime, Goodness Temofe, Pathapati, Venkat Subramanyam R., Nahar, Saifun, Ukwuoma, Chiagoziem Chima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858205/ https://www.ncbi.nlm.nih.gov/pubmed/36673109 http://dx.doi.org/10.3390/diagnostics13020299 |
Ejemplares similares
-
Parallelistic Convolution Neural Network Approach for Brain Tumor Diagnosis
por: Mgbejime, Goodness Temofe, et al.
Publicado: (2022) -
Fine-Tuned Siamese Network with Modified Enhanced Super-Resolution GAN Plus Based on Low-Quality Chest X-ray Images for COVID-19 Identification
por: Nneji, Grace Ugochi, et al.
Publicado: (2022) -
Multi-Channel Based Image Processing Scheme for Pneumonia Identification
por: Nneji, Grace Ugochi, et al.
Publicado: (2022) -
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
por: Monday, Happy Nkanta, et al.
Publicado: (2022) -
COVID-19 Diagnosis from Chest X-ray Images Using a Robust Multi-Resolution Analysis Siamese Neural Network with Super-Resolution Convolutional Neural Network
por: Monday, Happy Nkanta, et al.
Publicado: (2022)