Cargando…
Neural Information Squeezer for Causal Emergence
Conventional studies of causal emergence have revealed that stronger causality can be obtained on the macro-level than the micro-level of the same Markovian dynamical systems if an appropriate coarse-graining strategy has been conducted on the micro-states. However, identifying this emergent causali...
Autores principales: | Zhang, Jiang, Liu, Kaiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858212/ https://www.ncbi.nlm.nih.gov/pubmed/36673167 http://dx.doi.org/10.3390/e25010026 |
Ejemplares similares
-
Correction: Zhang, J.; Liu, K. Neural Information Squeezer for Causal Emergence. Entropy 2023, 25, 26
por: Zhang, Jiang, et al.
Publicado: (2023) -
Run-time Complexity Bounds Using Squeezers
por: Ish-Shalom, Oren, et al.
Publicado: (2021) -
Tunable spectral squeezers based on monolithically integrated diamond Raman resonators
por: Granados, E, et al.
Publicado: (2022) -
Examining the Causal Structures of Deep Neural Networks Using Information Theory
por: Marrow, Scythia, et al.
Publicado: (2020) -
Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data
por: Rosas, Fernando E., et al.
Publicado: (2020)