Cargando…

Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing

Coal fires, most of which are triggered by the spontaneous combustion of coal, cause a huge waste of resources and release poisonous and harmful substances into the environment, seriously threatening the safety of industrial production. Gel flame retardant plays a core role in coal fire prevention a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yiru, Zheng, Qinglin, Su, Hetao, Huang, Zijun, Wang, Gengyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858249/
https://www.ncbi.nlm.nih.gov/pubmed/36661835
http://dx.doi.org/10.3390/gels9010069
_version_ 1784874051668279296
author Wang, Yiru
Zheng, Qinglin
Su, Hetao
Huang, Zijun
Wang, Gengyu
author_facet Wang, Yiru
Zheng, Qinglin
Su, Hetao
Huang, Zijun
Wang, Gengyu
author_sort Wang, Yiru
collection PubMed
description Coal fires, most of which are triggered by the spontaneous combustion of coal, cause a huge waste of resources and release poisonous and harmful substances into the environment, seriously threatening the safety of industrial production. Gel flame retardant plays a core role in coal fire prevention and extinguishing. Most gel flame retardants used in coal fires possess good sealing and oxygen isolation properties, but it is difficult for them to flow deep into fire areas due to their low fluidity. Some fire extinguishing agents with good fluidity lack leak-blocking performance. In order to simultaneously improve the fluidity, leakage sealing, and oxygen isolation effects of coal fire extinguishing colloids, a novel, pH-sensitive, sol-gel transition colloid was prepared using low methoxyl pectin (LMP), calcium bentonite (Ca-Bt), sodium bentonite (Na-Bt), and water as the main components. When the initial sol-state colloid absorbed acid gas products from coal combustion, the pH value decreased and a large amount of Ca(2+) in Ca-Bt precipitated, thus immediately growing calcium bridges with LMP molecules that formed a three-dimensional network structure for gelation. The optimum ratio of the new colloid was determined through X-ray diffraction, tube inversion, shock shear-temperature scanning, and genetic algorithm. By testing the fire extinguishing performance of the colloid, the findings proved that the product had good oxygen isolation performance, strong adhesion ability, high thermal stability, and strong inhibition effects on coal combustion.
format Online
Article
Text
id pubmed-9858249
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98582492023-01-21 Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing Wang, Yiru Zheng, Qinglin Su, Hetao Huang, Zijun Wang, Gengyu Gels Article Coal fires, most of which are triggered by the spontaneous combustion of coal, cause a huge waste of resources and release poisonous and harmful substances into the environment, seriously threatening the safety of industrial production. Gel flame retardant plays a core role in coal fire prevention and extinguishing. Most gel flame retardants used in coal fires possess good sealing and oxygen isolation properties, but it is difficult for them to flow deep into fire areas due to their low fluidity. Some fire extinguishing agents with good fluidity lack leak-blocking performance. In order to simultaneously improve the fluidity, leakage sealing, and oxygen isolation effects of coal fire extinguishing colloids, a novel, pH-sensitive, sol-gel transition colloid was prepared using low methoxyl pectin (LMP), calcium bentonite (Ca-Bt), sodium bentonite (Na-Bt), and water as the main components. When the initial sol-state colloid absorbed acid gas products from coal combustion, the pH value decreased and a large amount of Ca(2+) in Ca-Bt precipitated, thus immediately growing calcium bridges with LMP molecules that formed a three-dimensional network structure for gelation. The optimum ratio of the new colloid was determined through X-ray diffraction, tube inversion, shock shear-temperature scanning, and genetic algorithm. By testing the fire extinguishing performance of the colloid, the findings proved that the product had good oxygen isolation performance, strong adhesion ability, high thermal stability, and strong inhibition effects on coal combustion. MDPI 2023-01-14 /pmc/articles/PMC9858249/ /pubmed/36661835 http://dx.doi.org/10.3390/gels9010069 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Yiru
Zheng, Qinglin
Su, Hetao
Huang, Zijun
Wang, Gengyu
Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing
title Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing
title_full Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing
title_fullStr Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing
title_full_unstemmed Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing
title_short Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing
title_sort synthesis and characteristics of a ph-sensitive sol-gel transition colloid for coal fire extinguishing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858249/
https://www.ncbi.nlm.nih.gov/pubmed/36661835
http://dx.doi.org/10.3390/gels9010069
work_keys_str_mv AT wangyiru synthesisandcharacteristicsofaphsensitivesolgeltransitioncolloidforcoalfireextinguishing
AT zhengqinglin synthesisandcharacteristicsofaphsensitivesolgeltransitioncolloidforcoalfireextinguishing
AT suhetao synthesisandcharacteristicsofaphsensitivesolgeltransitioncolloidforcoalfireextinguishing
AT huangzijun synthesisandcharacteristicsofaphsensitivesolgeltransitioncolloidforcoalfireextinguishing
AT wanggengyu synthesisandcharacteristicsofaphsensitivesolgeltransitioncolloidforcoalfireextinguishing