Cargando…
Domain Adaptation Principal Component Analysis: Base Linear Method for Learning with Out-of-Distribution Data
Domain adaptation is a popular paradigm in modern machine learning which aims at tackling the problem of divergence (or shift) between the labeled training and validation datasets (source domain) and a potentially large unlabeled dataset (target domain). The task is to embed both datasets into a com...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858254/ https://www.ncbi.nlm.nih.gov/pubmed/36673174 http://dx.doi.org/10.3390/e25010033 |