Cargando…
Domain Adaptation Principal Component Analysis: Base Linear Method for Learning with Out-of-Distribution Data
Domain adaptation is a popular paradigm in modern machine learning which aims at tackling the problem of divergence (or shift) between the labeled training and validation datasets (source domain) and a potentially large unlabeled dataset (target domain). The task is to embed both datasets into a com...
Autores principales: | Mirkes, Evgeny M., Bac, Jonathan, Fouché, Aziz, Stasenko, Sergey V., Zinovyev, Andrei, Gorban, Alexander N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858254/ https://www.ncbi.nlm.nih.gov/pubmed/36673174 http://dx.doi.org/10.3390/e25010033 |
Ejemplares similares
-
Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
por: Bac, Jonathan, et al.
Publicado: (2021) -
Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to myocardial infarction and diabetes data
por: Golovenkin, Sergey E, et al.
Publicado: (2020) -
Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph
por: Albergante, Luca, et al.
Publicado: (2020) -
High-Dimensional Separability for One- and Few-Shot Learning
por: Gorban, Alexander N., et al.
Publicado: (2021) -
Minimum Spanning vs. Principal Trees for Structured Approximations of Multi-Dimensional Datasets
por: Chervov, Alexander, et al.
Publicado: (2020)