Cargando…
Preoperative Prediction of Microsatellite Instability in Rectal Cancer Using Five Machine Learning Algorithms Based on Multiparametric MRI Radiomics
Objectives: To establish and verify radiomics models based on multiparametric MRI for preoperatively identifying the microsatellite instability (MSI) status of rectal cancer (RC) by comparing different machine learning algorithms. Methods: This retrospective study enrolled 383 (training set, 268; te...
Autores principales: | Zhang, Yang, Liu, Jing, Wu, Cuiyun, Peng, Jiaxuan, Wei, Yuguo, Cui, Sijia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858257/ https://www.ncbi.nlm.nih.gov/pubmed/36673079 http://dx.doi.org/10.3390/diagnostics13020269 |
Ejemplares similares
-
A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma
por: Yuan, Hang, et al.
Publicado: (2022) -
Preoperative Prediction of Perineural Invasion Status of Rectal Cancer Based on Radiomics Nomogram of Multiparametric Magnetic Resonance Imaging
por: Zhang, Yang, et al.
Publicado: (2022) -
Radiomics Analysis of Multi-Sequence MR Images For Predicting Microsatellite Instability Status Preoperatively in Rectal Cancer
por: Li, Zongbao, et al.
Publicado: (2021) -
Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer
por: Ying, Mingliang, et al.
Publicado: (2022) -
Corrigendum: Radiomics Analysis of Multi-Sequence MR Images For Predicting Microsatellite Instability Status Preoperatively in Rectal Cancer
por: Li, Zongbao, et al.
Publicado: (2021)