Cargando…
Colorimetric Chemosensor Based on Fe(3)O(4) Magnetic Molecularly Imprinted Nanoparticles for Highly Selective and Sensitive Detection of Norfloxacin in Milk
Long-term use of norfloxacin (NOR) will cause NOR residues in foods and harm human bodies. The determination of NOR residues is important for guaranteeing food safety. In this study, a simple, selective, and label-free colorimetric chemosensor for in situ NOR detection was developed based on Fe(3)O(...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858306/ https://www.ncbi.nlm.nih.gov/pubmed/36673377 http://dx.doi.org/10.3390/foods12020285 |
Sumario: | Long-term use of norfloxacin (NOR) will cause NOR residues in foods and harm human bodies. The determination of NOR residues is important for guaranteeing food safety. In this study, a simple, selective, and label-free colorimetric chemosensor for in situ NOR detection was developed based on Fe(3)O(4) magnetic molecularly imprinted nanoparticles (Fe(3)O(4) MMIP NPs). The Fe(3)O(4) MMIP NPs showed good peroxidase-like catalytic activity to 3,3′,5,5′-tetramethylbenzidine (TMB) and selective adsorption ability to NOR. The colorimetric chemosensor was constructed based on the Fe(3)O(4) MMIP NPs-H(2)O(2)-TMB reaction system. The absorbance differences were proportional to the concentrations of NOR in the range of 10–300 ng/mL with a limit of detection at 9 ng/mL. The colorimetric chemosensor was successfully applied to detect NOR residue in milk. The recovery range was 78.2–95.81%, with a relative standard deviation of 2.1–9.88%. Together, the proposed colorimetric chemosensor provides a reliable strategy for the detection of NOR residues in foods. |
---|