Cargando…
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy
Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858346/ https://www.ncbi.nlm.nih.gov/pubmed/36673459 http://dx.doi.org/10.3390/foods12020365 |
_version_ | 1784874076751265792 |
---|---|
author | Pérez-Rodríguez, Michael Mendoza, Alberto González, Lucy T. Lima Vieira, Alan Pellerano, Roberto Gerardo Gomes Neto, José Anchieta Ferreira, Edilene Cristina |
author_facet | Pérez-Rodríguez, Michael Mendoza, Alberto González, Lucy T. Lima Vieira, Alan Pellerano, Roberto Gerardo Gomes Neto, José Anchieta Ferreira, Edilene Cristina |
author_sort | Pérez-Rodríguez, Michael |
collection | PubMed |
description | Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample’s elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92–100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors. |
format | Online Article Text |
id | pubmed-9858346 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98583462023-01-21 Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy Pérez-Rodríguez, Michael Mendoza, Alberto González, Lucy T. Lima Vieira, Alan Pellerano, Roberto Gerardo Gomes Neto, José Anchieta Ferreira, Edilene Cristina Foods Communication Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample’s elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92–100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors. MDPI 2023-01-12 /pmc/articles/PMC9858346/ /pubmed/36673459 http://dx.doi.org/10.3390/foods12020365 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Pérez-Rodríguez, Michael Mendoza, Alberto González, Lucy T. Lima Vieira, Alan Pellerano, Roberto Gerardo Gomes Neto, José Anchieta Ferreira, Edilene Cristina Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
title | Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
title_full | Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
title_fullStr | Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
title_full_unstemmed | Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
title_short | Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
title_sort | rice labeling according to grain quality features using laser-induced breakdown spectroscopy |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858346/ https://www.ncbi.nlm.nih.gov/pubmed/36673459 http://dx.doi.org/10.3390/foods12020365 |
work_keys_str_mv | AT perezrodriguezmichael ricelabelingaccordingtograinqualityfeaturesusinglaserinducedbreakdownspectroscopy AT mendozaalberto ricelabelingaccordingtograinqualityfeaturesusinglaserinducedbreakdownspectroscopy AT gonzalezlucyt ricelabelingaccordingtograinqualityfeaturesusinglaserinducedbreakdownspectroscopy AT limavieiraalan ricelabelingaccordingtograinqualityfeaturesusinglaserinducedbreakdownspectroscopy AT pelleranorobertogerardo ricelabelingaccordingtograinqualityfeaturesusinglaserinducedbreakdownspectroscopy AT gomesnetojoseanchieta ricelabelingaccordingtograinqualityfeaturesusinglaserinducedbreakdownspectroscopy AT ferreiraedilenecristina ricelabelingaccordingtograinqualityfeaturesusinglaserinducedbreakdownspectroscopy |