Cargando…
Multi-Representation Domain Adaptation Network with Duplex Adversarial Learning for Hot-Rolling Mill Fault Diagnosis
The multi-process manufacturing of steel rolling products requires the cooperation of complicated and variable rolling conditions. Such conditions pose challenges to the fault diagnosis of the key equipment of the rolling mill. The development of transfer learning has alleviated the problem of fault...
Autores principales: | Peng, Rongrong, Zhang, Xingzhong, Shi, Peiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858472/ https://www.ncbi.nlm.nih.gov/pubmed/36673223 http://dx.doi.org/10.3390/e25010083 |
Ejemplares similares
-
Bearing Fault Diagnosis of Hot-Rolling Mill Utilizing Intelligent Optimized Self-Adaptive Deep Belief Network with Limited Samples
por: Peng, Rongrong, et al.
Publicado: (2022) -
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
A fault diagnosis method based on Auxiliary Classifier Generative Adversarial
Network for rolling bearing
por: Wu, Chunming, et al.
Publicado: (2021)