Cargando…
Deep Learning Multi-Class Approach for Human Fall Detection Based on Doppler Signatures
Falling events are a global health concern with short- and long-term physical and psychological implications, especially for the elderly population. This work aims to monitor human activity in an indoor environment and recognize falling events without requiring users to carry a device or sensor on t...
Autores principales: | Cardenas, Jorge D., Gutierrez, Carlos A., Aguilar-Ponce, Ruth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858740/ https://www.ncbi.nlm.nih.gov/pubmed/36673883 http://dx.doi.org/10.3390/ijerph20021123 |
Ejemplares similares
-
Influence of the Antenna Orientation on WiFi-Based Fall Detection Systems
por: Cardenas, Jorge D., et al.
Publicado: (2021) -
A Class-Imbalanced Deep Learning Fall Detection Algorithm Using Wearable Sensors
por: Zhang, Jing, et al.
Publicado: (2021) -
Pedestrian and Animal Recognition Using Doppler Radar Signature and Deep Learning
por: Buchman, Danny, et al.
Publicado: (2022) -
Classification of Space Objects by Using Deep Learning with Micro-Doppler Signature Images
por: Jung, Kwangyong, et al.
Publicado: (2021) -
UP-Fall Detection Dataset: A Multimodal Approach
por: Martínez-Villaseñor, Lourdes, et al.
Publicado: (2019)