Cargando…

Long-term respiratory follow-up of ICU hospitalized COVID-19 patients: Prospective cohort study

BACKGROUND: Coronavirus disease (COVID-19) survivors exhibit multisystemic alterations after hospitalization. Little is known about long-term imaging and pulmonary function of hospitalized patients intensive care unit (ICU) who survive COVID-19. We aimed to investigate long-term consequences of COVI...

Descripción completa

Detalles Bibliográficos
Autores principales: Ribeiro Carvalho, Carlos Roberto, Lamas, Celina Almeida, Chate, Rodrigo Caruso, Salge, João Marcos, Sawamura, Marcio Valente Yamada, de Albuquerque, André L. P., Toufen Junior, Carlos, Lima, Daniel Mario, Garcia, Michelle Louvaes, Scudeller, Paula Gobi, Nomura, Cesar Higa, Gutierrez, Marco Antonio, Baldi, Bruno Guedes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858876/
https://www.ncbi.nlm.nih.gov/pubmed/36662879
http://dx.doi.org/10.1371/journal.pone.0280567
Descripción
Sumario:BACKGROUND: Coronavirus disease (COVID-19) survivors exhibit multisystemic alterations after hospitalization. Little is known about long-term imaging and pulmonary function of hospitalized patients intensive care unit (ICU) who survive COVID-19. We aimed to investigate long-term consequences of COVID-19 on the respiratory system of patients discharged from hospital ICU and identify risk factors associated with chest computed tomography (CT) lesion severity. METHODS: A prospective cohort study of COVID-19 patients admitted to a tertiary hospital ICU in Brazil (March-August/2020), and followed-up six-twelve months after hospital admission. Initial assessment included: modified Medical Research Council dyspnea scale, SpO(2) evaluation, forced vital capacity, and chest X-Ray. Patients with alterations in at least one of these examinations were eligible for CT and pulmonary function tests (PFTs) approximately 16 months after hospital admission. Primary outcome: CT lesion severity (fibrotic-like or non-fibrotic-like). Baseline clinical variables were used to build a machine learning model (ML) to predict the severity of CT lesion. RESULTS: In total, 326 patients (72%) were eligible for CT and PFTs. COVID-19 CT lesions were identified in 81.8% of patients, and half of them showed mild restrictive lung impairment and impaired lung diffusion capacity. Patients with COVID-19 CT findings were stratified into two categories of lesion severity: non-fibrotic-like (50.8%-ground-glass opacities/reticulations) and fibrotic-like (49.2%-traction bronchiectasis/architectural distortion). No association between CT feature severity and altered lung diffusion or functional restrictive/obstructive patterns was found. The ML detected that male sex, ICU and invasive mechanic ventilation (IMV) period, tracheostomy and vasoactive drug need during hospitalization were predictors of CT lesion severity(sensitivity,0.78±0.02;specificity,0.79±0.01;F1-score,0.78±0.02;positive predictive rate,0.78±0.02; accuracy,0.78±0.02; and area under the curve,0.83±0.01). CONCLUSION: ICU hospitalization due to COVID-19 led to respiratory system alterations six-twelve months after hospital admission. Male sex and critical disease acute phase, characterized by a longer ICU and IMV period, and need for tracheostomy and vasoactive drugs, were risk factors for severe CT lesions six-twelve months after hospital admission.