Cargando…
Urban Flooding Prediction Method Based on the Combination of LSTM Neural Network and Numerical Model
At present, urban flood risk analysis and forecasting and early warning mainly use numerical models for simulation and analysis, which are more accurate and can reflect urban flood risk well. However, the calculation speed of numerical models is slow and it is difficult to meet the needs of daily fl...
Autores principales: | Chen, Jian, Li, Yaowei, Zhang, Changhui, Tian, Yangyang, Guo, Zhikai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858961/ https://www.ncbi.nlm.nih.gov/pubmed/36673799 http://dx.doi.org/10.3390/ijerph20021043 |
Ejemplares similares
-
The Effect of Design Rainfall Patterns on Urban Flooding Based on the Chicago Method
por: Chen, Jian, et al.
Publicado: (2023) -
A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)
por: Jiang, Changhui, et al.
Publicado: (2018) -
The Application of Automatic Identification System Information and PSO-LSTM Neural Network in CRI Prediction
por: Zhou, Wei, et al.
Publicado: (2022) -
Dual Memory LSTM with Dual Attention Neural Network for Spatiotemporal Prediction
por: Li, Teng, et al.
Publicado: (2021) -
Application of PSO-based LSTM Neural Network for Outpatient Volume Prediction
por: Lu, Wenjing, et al.
Publicado: (2021)