Cargando…

Spirulina platensis Immobilized Alginate Beads for Removal of Pb(II) from Aqueous Solutions

Microalgae contain a diversity of functional groups that can be used as environmental adsorbents. Spirulina platensis is a blue-green microalga that comprises protein-N, which is advantageous for use in nitrogen-containing biomass as adsorbents. This study aimed to enhance the adsorption properties...

Descripción completa

Detalles Bibliográficos
Autores principales: Purev, Oyunbileg, Park, Chulhyun, Kim, Hyunsoo, Myung, Eunji, Choi, Nagchoul, Cho, Kanghee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859109/
https://www.ncbi.nlm.nih.gov/pubmed/36673865
http://dx.doi.org/10.3390/ijerph20021106
Descripción
Sumario:Microalgae contain a diversity of functional groups that can be used as environmental adsorbents. Spirulina platensis is a blue-green microalga that comprises protein-N, which is advantageous for use in nitrogen-containing biomass as adsorbents. This study aimed to enhance the adsorption properties of alginate hydrogels by employing Spirulina platensis. Spirulina platensis was immobilized on sodium alginate (S.P@Ca-SA) via crosslinking. The results of field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses of the N-containing functional groups indicated that Spirulina platensis was successfully immobilized on the alginate matrix. We evaluated the effects of pH, concentration, and contact time on Pb(II) adsorption by S.P@Ca-SA. The results demonstrated that S.P@Ca-SA could effectively eliminate Pb(II) at pH 5, reaching equilibrium within 6 h, and the maximum Pb(II) sorption capacity of S.P@Ca-SA was 87.9 mg/g. Our results indicated that S.P@Ca-SA fits well with the pseudo-second-order and Freundlich models. Compared with Spirulina platensis and blank alginate beads, S.P@Ca-SA exhibited an enhanced Pb(II) adsorption efficiency. The correlation implies that the amino groups act as adsorption sites facilitating the elimination of Pb(II).