Cargando…
Forecasting Carbon Price Using Double Shrinkage Methods
It is commonly recognized that setting a reasonable carbon price can promote the healthy development of a carbon trading market, so it is especially important to improve the accuracy of carbon price forecasting. In this paper, we propose and evaluate a hybrid carbon price prediction model based on s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859446/ https://www.ncbi.nlm.nih.gov/pubmed/36674257 http://dx.doi.org/10.3390/ijerph20021503 |
_version_ | 1784874357111128064 |
---|---|
author | Wei, Xiaolu Ouyang, Hongbing |
author_facet | Wei, Xiaolu Ouyang, Hongbing |
author_sort | Wei, Xiaolu |
collection | PubMed |
description | It is commonly recognized that setting a reasonable carbon price can promote the healthy development of a carbon trading market, so it is especially important to improve the accuracy of carbon price forecasting. In this paper, we propose and evaluate a hybrid carbon price prediction model based on so-called double shrinkage methods, which combines factor screening, dimensionality reduction, and model prediction. In order to verify the effectiveness and superiority of the proposed model, this paper takes data from the Guangdong carbon trading market for empirical analysis. The sample interval is from 5 August 2013 to 25 March 2022. Based on the results of the empirical analysis, several main findings can be summarized. First, the double shrinkage methods proposed in this paper yield more accurate prediction results than various alternative models based on the direct application of factor screening methods or dimensionality reduction methods, when comparing R(2), root-mean-square error (RMSE), and root absolute error (RAE). Second, LSTM-based double shrinkage methods have superior prediction performance compared to LR-based double shrinkage methods. Third, these findings are robust with the use of normalized data, different data frequencies, different carbon trading markets, and different dataset divisions. This study provides new ideas for carbon price prediction, which might have a theoretical and practical contributions to complex and non-linear time series analysis. |
format | Online Article Text |
id | pubmed-9859446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98594462023-01-21 Forecasting Carbon Price Using Double Shrinkage Methods Wei, Xiaolu Ouyang, Hongbing Int J Environ Res Public Health Article It is commonly recognized that setting a reasonable carbon price can promote the healthy development of a carbon trading market, so it is especially important to improve the accuracy of carbon price forecasting. In this paper, we propose and evaluate a hybrid carbon price prediction model based on so-called double shrinkage methods, which combines factor screening, dimensionality reduction, and model prediction. In order to verify the effectiveness and superiority of the proposed model, this paper takes data from the Guangdong carbon trading market for empirical analysis. The sample interval is from 5 August 2013 to 25 March 2022. Based on the results of the empirical analysis, several main findings can be summarized. First, the double shrinkage methods proposed in this paper yield more accurate prediction results than various alternative models based on the direct application of factor screening methods or dimensionality reduction methods, when comparing R(2), root-mean-square error (RMSE), and root absolute error (RAE). Second, LSTM-based double shrinkage methods have superior prediction performance compared to LR-based double shrinkage methods. Third, these findings are robust with the use of normalized data, different data frequencies, different carbon trading markets, and different dataset divisions. This study provides new ideas for carbon price prediction, which might have a theoretical and practical contributions to complex and non-linear time series analysis. MDPI 2023-01-13 /pmc/articles/PMC9859446/ /pubmed/36674257 http://dx.doi.org/10.3390/ijerph20021503 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wei, Xiaolu Ouyang, Hongbing Forecasting Carbon Price Using Double Shrinkage Methods |
title | Forecasting Carbon Price Using Double Shrinkage Methods |
title_full | Forecasting Carbon Price Using Double Shrinkage Methods |
title_fullStr | Forecasting Carbon Price Using Double Shrinkage Methods |
title_full_unstemmed | Forecasting Carbon Price Using Double Shrinkage Methods |
title_short | Forecasting Carbon Price Using Double Shrinkage Methods |
title_sort | forecasting carbon price using double shrinkage methods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859446/ https://www.ncbi.nlm.nih.gov/pubmed/36674257 http://dx.doi.org/10.3390/ijerph20021503 |
work_keys_str_mv | AT weixiaolu forecastingcarbonpriceusingdoubleshrinkagemethods AT ouyanghongbing forecastingcarbonpriceusingdoubleshrinkagemethods |