Cargando…

A Deep Learning-Based Framework for Retinal Disease Classification

This study addresses the problem of the automatic detection of disease states of the retina. In order to solve the abovementioned problem, this study develops an artificially intelligent model. The model is based on a customized 19-layer deep convolutional neural network called VGG-19 architecture....

Descripción completa

Detalles Bibliográficos
Autores principales: Choudhary, Amit, Ahlawat, Savita, Urooj, Shabana, Pathak, Nitish, Lay-Ekuakille, Aimé, Sharma, Neelam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859538/
https://www.ncbi.nlm.nih.gov/pubmed/36673578
http://dx.doi.org/10.3390/healthcare11020212
Descripción
Sumario:This study addresses the problem of the automatic detection of disease states of the retina. In order to solve the abovementioned problem, this study develops an artificially intelligent model. The model is based on a customized 19-layer deep convolutional neural network called VGG-19 architecture. The model (VGG-19 architecture) is empowered by transfer learning. The model is designed so that it can learn from a large set of images taken with optical coherence tomography (OCT) and classify them into four conditions of the retina: (1) choroidal neovascularization, (2) drusen, (3) diabetic macular edema, and (4) normal form. The training datasets (taken from publicly available sources) consist of 84,568 instances of OCT retinal images. The datasets exhibit all four classes of retinal disease mentioned above. The proposed model achieved a 99.17% classification accuracy with 0.995 specificities and 0.99 sensitivity, making it better than the existing models. In addition, the proper statistical evaluation is done on the predictions using such performance measures as (1) area under the receiver operating characteristic curve, (2) Cohen’s kappa parameter, and (3) confusion matrix. Experimental results show that the proposed VGG-19 architecture coupled with transfer learning is an effective technique for automatically detecting the disease state of a retina.