Cargando…
Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester
South Africa adopts intensive livestock farming, embracing the employment of huge quantities of antibiotics to meet the increased demand for meat. Therefore, bacteria occurring in the animal products and manure might develop antibiotic resistance, a scenario which threatens public health. The study...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859553/ https://www.ncbi.nlm.nih.gov/pubmed/36673737 http://dx.doi.org/10.3390/ijerph20020984 |
_version_ | 1784874384203186176 |
---|---|
author | Manyi-Loh, Christy Echakachi Okoh, Anthony Ifeanyin Lues, Ryk |
author_facet | Manyi-Loh, Christy Echakachi Okoh, Anthony Ifeanyin Lues, Ryk |
author_sort | Manyi-Loh, Christy Echakachi |
collection | PubMed |
description | South Africa adopts intensive livestock farming, embracing the employment of huge quantities of antibiotics to meet the increased demand for meat. Therefore, bacteria occurring in the animal products and manure might develop antibiotic resistance, a scenario which threatens public health. The study investigated the occurrence of Gram-negative bacteria from eighteen pooled samples withdrawn from a single-stage steel biodigester co-digesting pig manure (75%) and pine wood saw dust (25%). The viable counts for each bacterium were determined using the spread plate technique. The bacterial isolates were characterised based on cultural, morphological and biochemical characteristics, using the Analytical Profile Index 20 e test kit. In addition, isolates were characterised based on susceptibility to 14 conventional antibiotics via the disc diffusion method. The MAR index was calculated for each bacterial isolate. The bacterial counts ranged from 10(4) to 10(6) cfu/mL, indicating manure as a potential source of contamination. Overall, 159 bacterial isolates were recovered, which displayed diverse susceptibility patterns with marked sensitivity to amoxicillin (100% E. coli), streptomycin (96.15% for Yersinia spp.; 93.33% for Salmonella spp.) and 75% Campylobacter spp. to nitrofurantoin. Varying resistance rates were equally observed, but a common resistance was demonstrated to erythromycin (100% of Salmonella and Yersinia spp.), 90.63% of E. coli and 78.57% of Campylobacter spp. A total of 91.19% of the bacterial isolates had a MAR index > 0.2, represented by 94 MAR phenotypes. The findings revealed multidrug resistance in bacteria from the piggery source, suggesting they can contribute immensely to the spread of multidrug resistance; thus, it serves as a pointer to the need for the enforcement of regulatory antibiotic use in piggery farms. Therefore, to curb the level of multidrug resistance, the piggery farm should implement control measures in the study area. |
format | Online Article Text |
id | pubmed-9859553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98595532023-01-21 Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester Manyi-Loh, Christy Echakachi Okoh, Anthony Ifeanyin Lues, Ryk Int J Environ Res Public Health Article South Africa adopts intensive livestock farming, embracing the employment of huge quantities of antibiotics to meet the increased demand for meat. Therefore, bacteria occurring in the animal products and manure might develop antibiotic resistance, a scenario which threatens public health. The study investigated the occurrence of Gram-negative bacteria from eighteen pooled samples withdrawn from a single-stage steel biodigester co-digesting pig manure (75%) and pine wood saw dust (25%). The viable counts for each bacterium were determined using the spread plate technique. The bacterial isolates were characterised based on cultural, morphological and biochemical characteristics, using the Analytical Profile Index 20 e test kit. In addition, isolates were characterised based on susceptibility to 14 conventional antibiotics via the disc diffusion method. The MAR index was calculated for each bacterial isolate. The bacterial counts ranged from 10(4) to 10(6) cfu/mL, indicating manure as a potential source of contamination. Overall, 159 bacterial isolates were recovered, which displayed diverse susceptibility patterns with marked sensitivity to amoxicillin (100% E. coli), streptomycin (96.15% for Yersinia spp.; 93.33% for Salmonella spp.) and 75% Campylobacter spp. to nitrofurantoin. Varying resistance rates were equally observed, but a common resistance was demonstrated to erythromycin (100% of Salmonella and Yersinia spp.), 90.63% of E. coli and 78.57% of Campylobacter spp. A total of 91.19% of the bacterial isolates had a MAR index > 0.2, represented by 94 MAR phenotypes. The findings revealed multidrug resistance in bacteria from the piggery source, suggesting they can contribute immensely to the spread of multidrug resistance; thus, it serves as a pointer to the need for the enforcement of regulatory antibiotic use in piggery farms. Therefore, to curb the level of multidrug resistance, the piggery farm should implement control measures in the study area. MDPI 2023-01-05 /pmc/articles/PMC9859553/ /pubmed/36673737 http://dx.doi.org/10.3390/ijerph20020984 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Manyi-Loh, Christy Echakachi Okoh, Anthony Ifeanyin Lues, Ryk Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester |
title | Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester |
title_full | Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester |
title_fullStr | Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester |
title_full_unstemmed | Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester |
title_short | Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester |
title_sort | prevalence of multidrug-resistant bacteria (enteropathogens) recovered from a blend of pig manure and pinewood saw dust during anaerobic co-digestion in a steel biodigester |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859553/ https://www.ncbi.nlm.nih.gov/pubmed/36673737 http://dx.doi.org/10.3390/ijerph20020984 |
work_keys_str_mv | AT manyilohchristyechakachi prevalenceofmultidrugresistantbacteriaenteropathogensrecoveredfromablendofpigmanureandpinewoodsawdustduringanaerobiccodigestioninasteelbiodigester AT okohanthonyifeanyin prevalenceofmultidrugresistantbacteriaenteropathogensrecoveredfromablendofpigmanureandpinewoodsawdustduringanaerobiccodigestioninasteelbiodigester AT luesryk prevalenceofmultidrugresistantbacteriaenteropathogensrecoveredfromablendofpigmanureandpinewoodsawdustduringanaerobiccodigestioninasteelbiodigester |