Cargando…
Adaptive Gaussian Markov random field spatiotemporal models for infectious disease mapping and forecasting
Recent disease mapping literature presents adaptively parameterized spatiotemporal (ST) autoregressive (AR) or conditional autoregressive (CAR) models for Bayesian prediction of COVID-19 infection risks. These models were motivated to capture complex spatiotemporal dynamics and heterogeneities of in...
Autor principal: | MacNab, Ying C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859649/ https://www.ncbi.nlm.nih.gov/pubmed/36713268 http://dx.doi.org/10.1016/j.spasta.2023.100726 |
Ejemplares similares
-
Revisiting Gaussian Markov random fields and Bayesian disease mapping
por: MacNab, Ying C
Publicado: (2022) -
Modelling spatial variation in disease risk using Gaussian Markov random field proxies for Gaussian random fields
por: Follestad, T, et al.
Publicado: (2003) -
Gaussian Markov random fields: theory and applications
por: Rue, Havard, et al.
Publicado: (2005) -
Approximating Hidden Gaussian Markov Random Fields
por: Rue, H, et al.
Publicado: (2003) -
Marginal Variances for Gaussian Markov Random Fields
por: Rue, H
Publicado: (2005)