Cargando…

Multivalency ensures persistence of a +TIP body at specialized microtubule ends

Microtubule plus-end tracking proteins (+TIPs) control microtubule specialization and are as such essential for cell division and morphogenesis. Here we investigated interactions and functions of the budding yeast Kar9 network consisting of the core +TIP proteins Kar9 (functional homologue of APC, M...

Descripción completa

Detalles Bibliográficos
Autores principales: Meier, Sandro M., Farcas, Ana-Maria, Kumar, Anil, Ijavi, Mahdiye, Bill, Robert T., Stelling, Jörg, Dufresne, Eric R., Steinmetz, Michel O., Barral, Yves
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859758/
https://www.ncbi.nlm.nih.gov/pubmed/36536177
http://dx.doi.org/10.1038/s41556-022-01035-2
Descripción
Sumario:Microtubule plus-end tracking proteins (+TIPs) control microtubule specialization and are as such essential for cell division and morphogenesis. Here we investigated interactions and functions of the budding yeast Kar9 network consisting of the core +TIP proteins Kar9 (functional homologue of APC, MACF and SLAIN), Bim1 (orthologous to EB1) and Bik1 (orthologous to CLIP-170). A multivalent web of redundant interactions links the three +TIPs together to form a ‘+TIP body’ at the end of chosen microtubules. This body behaves as a liquid condensate that allows it to persist on both growing and shrinking microtubule ends, and to function as a mechanical coupling device between microtubules and actin cables. Our study identifies nanometre-scale condensates as effective cellular structures and underlines the power of dissecting the web of low-affinity interactions driving liquid–liquid phase separation in order to establish how condensation processes support cell function.