Cargando…

Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynam...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Zijian, Adrada, Beatriz E., Candelaria, Rosalind P., Elshafeey, Nabil A., Boge, Medine, Mohamed, Rania M., Pashapoor, Sanaz, Sun, Jia, Xu, Zhan, Panthi, Bikash, Son, Jong Bum, Guirguis, Mary S., Patel, Miral M., Whitman, Gary J., Moseley, Tanya W., Scoggins, Marion E., White, Jason B., Litton, Jennifer K., Valero, Vicente, Hunt, Kelly K., Tripathy, Debu, Yang, Wei, Wei, Peng, Yam, Clinton, Pagel, Mark D., Rauch, Gaiane M., Ma, Jingfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859781/
https://www.ncbi.nlm.nih.gov/pubmed/36670144
http://dx.doi.org/10.1038/s41598-023-27518-2
_version_ 1784874437277908992
author Zhou, Zijian
Adrada, Beatriz E.
Candelaria, Rosalind P.
Elshafeey, Nabil A.
Boge, Medine
Mohamed, Rania M.
Pashapoor, Sanaz
Sun, Jia
Xu, Zhan
Panthi, Bikash
Son, Jong Bum
Guirguis, Mary S.
Patel, Miral M.
Whitman, Gary J.
Moseley, Tanya W.
Scoggins, Marion E.
White, Jason B.
Litton, Jennifer K.
Valero, Vicente
Hunt, Kelly K.
Tripathy, Debu
Yang, Wei
Wei, Peng
Yam, Clinton
Pagel, Mark D.
Rauch, Gaiane M.
Ma, Jingfei
author_facet Zhou, Zijian
Adrada, Beatriz E.
Candelaria, Rosalind P.
Elshafeey, Nabil A.
Boge, Medine
Mohamed, Rania M.
Pashapoor, Sanaz
Sun, Jia
Xu, Zhan
Panthi, Bikash
Son, Jong Bum
Guirguis, Mary S.
Patel, Miral M.
Whitman, Gary J.
Moseley, Tanya W.
Scoggins, Marion E.
White, Jason B.
Litton, Jennifer K.
Valero, Vicente
Hunt, Kelly K.
Tripathy, Debu
Yang, Wei
Wei, Peng
Yam, Clinton
Pagel, Mark D.
Rauch, Gaiane M.
Ma, Jingfei
author_sort Zhou, Zijian
collection PubMed
description Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients’ pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST.
format Online
Article
Text
id pubmed-9859781
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98597812023-01-22 Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI Zhou, Zijian Adrada, Beatriz E. Candelaria, Rosalind P. Elshafeey, Nabil A. Boge, Medine Mohamed, Rania M. Pashapoor, Sanaz Sun, Jia Xu, Zhan Panthi, Bikash Son, Jong Bum Guirguis, Mary S. Patel, Miral M. Whitman, Gary J. Moseley, Tanya W. Scoggins, Marion E. White, Jason B. Litton, Jennifer K. Valero, Vicente Hunt, Kelly K. Tripathy, Debu Yang, Wei Wei, Peng Yam, Clinton Pagel, Mark D. Rauch, Gaiane M. Ma, Jingfei Sci Rep Article Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients’ pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST. Nature Publishing Group UK 2023-01-20 /pmc/articles/PMC9859781/ /pubmed/36670144 http://dx.doi.org/10.1038/s41598-023-27518-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zhou, Zijian
Adrada, Beatriz E.
Candelaria, Rosalind P.
Elshafeey, Nabil A.
Boge, Medine
Mohamed, Rania M.
Pashapoor, Sanaz
Sun, Jia
Xu, Zhan
Panthi, Bikash
Son, Jong Bum
Guirguis, Mary S.
Patel, Miral M.
Whitman, Gary J.
Moseley, Tanya W.
Scoggins, Marion E.
White, Jason B.
Litton, Jennifer K.
Valero, Vicente
Hunt, Kelly K.
Tripathy, Debu
Yang, Wei
Wei, Peng
Yam, Clinton
Pagel, Mark D.
Rauch, Gaiane M.
Ma, Jingfei
Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI
title Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI
title_full Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI
title_fullStr Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI
title_full_unstemmed Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI
title_short Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI
title_sort prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric mri
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859781/
https://www.ncbi.nlm.nih.gov/pubmed/36670144
http://dx.doi.org/10.1038/s41598-023-27518-2
work_keys_str_mv AT zhouzijian predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT adradabeatrize predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT candelariarosalindp predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT elshafeeynabila predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT bogemedine predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT mohamedraniam predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT pashapoorsanaz predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT sunjia predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT xuzhan predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT panthibikash predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT sonjongbum predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT guirguismarys predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT patelmiralm predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT whitmangaryj predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT moseleytanyaw predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT scogginsmarione predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT whitejasonb predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT littonjenniferk predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT valerovicente predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT huntkellyk predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT tripathydebu predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT yangwei predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT weipeng predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT yamclinton predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT pagelmarkd predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT rauchgaianem predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri
AT majingfei predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri