Cargando…
Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynam...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859781/ https://www.ncbi.nlm.nih.gov/pubmed/36670144 http://dx.doi.org/10.1038/s41598-023-27518-2 |
_version_ | 1784874437277908992 |
---|---|
author | Zhou, Zijian Adrada, Beatriz E. Candelaria, Rosalind P. Elshafeey, Nabil A. Boge, Medine Mohamed, Rania M. Pashapoor, Sanaz Sun, Jia Xu, Zhan Panthi, Bikash Son, Jong Bum Guirguis, Mary S. Patel, Miral M. Whitman, Gary J. Moseley, Tanya W. Scoggins, Marion E. White, Jason B. Litton, Jennifer K. Valero, Vicente Hunt, Kelly K. Tripathy, Debu Yang, Wei Wei, Peng Yam, Clinton Pagel, Mark D. Rauch, Gaiane M. Ma, Jingfei |
author_facet | Zhou, Zijian Adrada, Beatriz E. Candelaria, Rosalind P. Elshafeey, Nabil A. Boge, Medine Mohamed, Rania M. Pashapoor, Sanaz Sun, Jia Xu, Zhan Panthi, Bikash Son, Jong Bum Guirguis, Mary S. Patel, Miral M. Whitman, Gary J. Moseley, Tanya W. Scoggins, Marion E. White, Jason B. Litton, Jennifer K. Valero, Vicente Hunt, Kelly K. Tripathy, Debu Yang, Wei Wei, Peng Yam, Clinton Pagel, Mark D. Rauch, Gaiane M. Ma, Jingfei |
author_sort | Zhou, Zijian |
collection | PubMed |
description | Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients’ pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST. |
format | Online Article Text |
id | pubmed-9859781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98597812023-01-22 Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI Zhou, Zijian Adrada, Beatriz E. Candelaria, Rosalind P. Elshafeey, Nabil A. Boge, Medine Mohamed, Rania M. Pashapoor, Sanaz Sun, Jia Xu, Zhan Panthi, Bikash Son, Jong Bum Guirguis, Mary S. Patel, Miral M. Whitman, Gary J. Moseley, Tanya W. Scoggins, Marion E. White, Jason B. Litton, Jennifer K. Valero, Vicente Hunt, Kelly K. Tripathy, Debu Yang, Wei Wei, Peng Yam, Clinton Pagel, Mark D. Rauch, Gaiane M. Ma, Jingfei Sci Rep Article Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients’ pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST. Nature Publishing Group UK 2023-01-20 /pmc/articles/PMC9859781/ /pubmed/36670144 http://dx.doi.org/10.1038/s41598-023-27518-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhou, Zijian Adrada, Beatriz E. Candelaria, Rosalind P. Elshafeey, Nabil A. Boge, Medine Mohamed, Rania M. Pashapoor, Sanaz Sun, Jia Xu, Zhan Panthi, Bikash Son, Jong Bum Guirguis, Mary S. Patel, Miral M. Whitman, Gary J. Moseley, Tanya W. Scoggins, Marion E. White, Jason B. Litton, Jennifer K. Valero, Vicente Hunt, Kelly K. Tripathy, Debu Yang, Wei Wei, Peng Yam, Clinton Pagel, Mark D. Rauch, Gaiane M. Ma, Jingfei Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI |
title | Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI |
title_full | Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI |
title_fullStr | Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI |
title_full_unstemmed | Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI |
title_short | Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI |
title_sort | prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric mri |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859781/ https://www.ncbi.nlm.nih.gov/pubmed/36670144 http://dx.doi.org/10.1038/s41598-023-27518-2 |
work_keys_str_mv | AT zhouzijian predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT adradabeatrize predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT candelariarosalindp predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT elshafeeynabila predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT bogemedine predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT mohamedraniam predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT pashapoorsanaz predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT sunjia predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT xuzhan predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT panthibikash predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT sonjongbum predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT guirguismarys predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT patelmiralm predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT whitmangaryj predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT moseleytanyaw predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT scogginsmarione predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT whitejasonb predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT littonjenniferk predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT valerovicente predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT huntkellyk predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT tripathydebu predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT yangwei predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT weipeng predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT yamclinton predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT pagelmarkd predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT rauchgaianem predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri AT majingfei predictionofpathologiccompleteresponsetoneoadjuvantsystemictherapyintriplenegativebreastcancerusingdeeplearningonmultiparametricmri |