Cargando…

Feature selection methods and predictive models in CT lung cancer radiomics

Radiomics is a technique that extracts quantitative features from medical images using data‐characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Gary, Zhang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860004/
https://www.ncbi.nlm.nih.gov/pubmed/36527376
http://dx.doi.org/10.1002/acm2.13869
Descripción
Sumario:Radiomics is a technique that extracts quantitative features from medical images using data‐characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes cohort selection, radiomic feature extraction, feature and predictive model selection, and model training and validation. While there has been increasing attention given to radiomic feature extraction, standardization, and reproducibility, currently, there is a lack of rigorous evaluation of feature selection methods and predictive models. Herein, we review the published radiomics investigations in CT lung cancer and provide an overview of the commonly used radiomic feature selection methods and predictive models. We also compare limitations of various methods in clinical applications and present sources of uncertainty associated with those methods. This review is expected to help raise awareness of the impact of radiomic feature and model selection methods on the integrity of radiomics studies.