Cargando…
Precision agriculture management based on a surrogate model assisted multiobjective algorithmic framework
Sustainable intensification needs to optimize irrigation and fertilization strategies while increasing crop yield. To enable more precision and effective agricultural management, a bi-level screening and bi-level optimization framework is proposed. Irrigation and fertilization dates are obtained by...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860027/ https://www.ncbi.nlm.nih.gov/pubmed/36670167 http://dx.doi.org/10.1038/s41598-023-27990-w |
Sumario: | Sustainable intensification needs to optimize irrigation and fertilization strategies while increasing crop yield. To enable more precision and effective agricultural management, a bi-level screening and bi-level optimization framework is proposed. Irrigation and fertilization dates are obtained by upper-level screening and upper-level optimization. Subsequently, due to the complexity of the problem, the lower-level optimization uses a data-driven evolutionary algorithm, which combines the fast non-dominated sorting genetic algorithm (NSGA-II), surrogate-assisted model of radial basis function and Decision Support System for Agrotechnology Transfer to handle the expensive objective problem and produce a set of optimal solutions representing a trade-off between conflicting objectives. Then, the lower-level screening quickly finds better irrigation and fertilization strategies among thousands of solutions. Finally, the experiment produces a better irrigation and fertilization strategy, with water consumption reduced by 44%, nitrogen application reduced by 37%, and economic benefits increased by 7 to 8%. |
---|