Cargando…

Potential of hydroethanolic leaf extract of Ocimum sanctum in ameliorating redox status and lung injury in COPD: an in vivo and in silico study

Oxidative stress and inflammation are hypothesised as the main contributor for Chronic Obstructive Pulmonary Disease (COPD). Cigarette smoke (CS), a major cause of COPD leads to inflammation resulting in recruitment of neutrophils and macrophages which are rich sources of oxidants. Activation of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Srivastava, Atul, Subhashini, Pandey, Vinita, Yadav, Vandana, Singh, Sangita, Srivastava, Ragini
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860039/
https://www.ncbi.nlm.nih.gov/pubmed/36670131
http://dx.doi.org/10.1038/s41598-023-27543-1
Descripción
Sumario:Oxidative stress and inflammation are hypothesised as the main contributor for Chronic Obstructive Pulmonary Disease (COPD). Cigarette smoke (CS), a major cause of COPD leads to inflammation resulting in recruitment of neutrophils and macrophages which are rich sources of oxidants. Activation of these cells produces excess oxidants and depletes antioxidants resulting in stress. Presently, effective drug for COPD is limited; therefore, novel compounds from natural sources, including plants are under exploration. The present study aims to investigate the protective effect of Ocimum sanctum leaf extract (OLE) in CS − induced model of COPD. Exposure to CS was performed thrice a week for 8 weeks and OLE (200 mg/kg and 400 mg/kg) was administered an hour before CS exposure. Control group (negative control) were exposed to ambient air while COPD group was exposed to CS (positive control). Administration of OLE doses reduced inflammation, decreased oxidant concentration and increased antioxidant concentration (p < 0.01). Molecular docking studies between the major phytocompounds of OLE (Eugenol, Cyclohexane and Caryophyllene) and antioxidant enzymes Superoxide dismutase (SOD), Catalase, Glutathione peroxidase (GPx), Glutathione reductase (GR) and Glutathione S Transferase (GST) showed strong binding interaction in terms of binding energy. In vivo and in silico findings for the first time indicates that OLE extract significantly alleviates oxidative stress by its potent free radical scavenging property and strong interaction with antioxidant enzymes. OLE extract may prove to be a therapeutic option for COPD prevention and treatment.