Cargando…

Translocation of a single Arg[Formula: see text] peptide across a DOPC/DOPG(4:1) model membrane using the weighted ensemble method

It is difficult to observe a spontaneous translocation of cell-penetrating peptides(CPPs) within a short time scale (e.g., a few hundred ns) in all-atom molecular dynamics(MD) simulations because the time required for the translocation of usual CPPs is on the order of minutes or so. In this work, we...

Descripción completa

Detalles Bibliográficos
Autor principal: Choe, Seungho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860060/
https://www.ncbi.nlm.nih.gov/pubmed/36670187
http://dx.doi.org/10.1038/s41598-023-28493-4
Descripción
Sumario:It is difficult to observe a spontaneous translocation of cell-penetrating peptides(CPPs) within a short time scale (e.g., a few hundred ns) in all-atom molecular dynamics(MD) simulations because the time required for the translocation of usual CPPs is on the order of minutes or so. In this work, we report a spontaneous translocation of a single Arg[Formula: see text] (R9) across a DOPC/DOPG(4:1) model membrane within an order of a few tens ns scale by using the weighted ensemble(WE) method. We identify how water molecules and the orientation of Arg[Formula: see text] play a role in translocation. We also show how lipid molecules are transported along with Arg[Formula: see text] . In addition, we present free energy profiles of the translocation across the membrane using umbrella sampling and show that a single Arg[Formula: see text] translocation is energetically unfavorable. We expect that the WE method can help study interactions of CPPs with various model membranes within MD simulation approaches.