Cargando…
Recent development of computational cluster analysis methods for single-molecule localization microscopy images
With the development of super-resolution imaging techniques, it is crucial to understand protein structure at the nanoscale in terms of clustering and organization in a cell. However, cluster analysis from single-molecule localization microscopy (SMLM) images remains challenging because the classica...
Autores principales: | Hyun, Yoonsuk, Kim, Doory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860261/ https://www.ncbi.nlm.nih.gov/pubmed/36698968 http://dx.doi.org/10.1016/j.csbj.2023.01.006 |
Ejemplares similares
-
Development of Deep-Learning-Based Single-Molecule Localization Image Analysis
por: Hyun, Yoonsuk, et al.
Publicado: (2022) -
Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy
por: Jeong, Dokyung, et al.
Publicado: (2022) -
Accelerating single molecule localization microscopy through parallel processing on a high‐performance computing cluster
por: MUNRO, I., et al.
Publicado: (2018) -
Recent progress on single-molecule localization microscopy
por: Gu, Lusheng, et al.
Publicado: (2021) -
Robust nonparametric quantification of clustering density of molecules in single-molecule localization microscopy
por: Jiang, Shenghang, et al.
Publicado: (2017)