Cargando…

Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers

In the tropical and semi-arid regions of Africa, sorghum [Sorghum bicolor (L.) Moench] is mainly grown as a major food security crop. Understanding the extent and pattern of genetic variability is a prerequisite criterion for sorghum improvement and conservation. The genetic diversity and population...

Descripción completa

Detalles Bibliográficos
Autores principales: Mamo, Wubshet, Enyew, Muluken, Mekonnen, Tilahun, Tesfaye, Kassahun, Feyissa, Tileye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860282/
https://www.ncbi.nlm.nih.gov/pubmed/36691551
http://dx.doi.org/10.1016/j.heliyon.2023.e12830
_version_ 1784874546778603520
author Mamo, Wubshet
Enyew, Muluken
Mekonnen, Tilahun
Tesfaye, Kassahun
Feyissa, Tileye
author_facet Mamo, Wubshet
Enyew, Muluken
Mekonnen, Tilahun
Tesfaye, Kassahun
Feyissa, Tileye
author_sort Mamo, Wubshet
collection PubMed
description In the tropical and semi-arid regions of Africa, sorghum [Sorghum bicolor (L.) Moench] is mainly grown as a major food security crop. Understanding the extent and pattern of genetic variability is a prerequisite criterion for sorghum improvement and conservation. The genetic diversity and population structure of 100 genotypes of sorghum were profiled using 15 microsatellite loci. A total of 108 alleles, with an overall mean of 7.2 alleles per locus, were produced by all of the microsatellite loci used due to their high polymorphism. Polymorphic information content values ranging from 0.68 to 0.89 indicated that all of the loci are effective genetic tools for analysing the genetic structure of sorghum. Different diversity metrics were used to evaluate genetic diversity among populations, and Nei's gene diversity index ranged from 0.74 to 0.81 with an overall mean of 0.78. Poor genetic differentiation (FST: 0.02; p < 0.0001) was found, where 98% of entire variability was accounted by the within populations genetic variability, leaving only 2.32% among populations. The highest genetic differentiation and Nis's genetic distance were observed between the sorghum populations of the Southern Nation and Nationalities Peoples and Dire Dawa regions. Due to increased gene flow (Nm = 10.53), the clustering, principal coordinate analysis and STRUCTURE analysis failed to categorize the populations into genetically different groups corresponding to their geographic sampling areas. In general, it was found that the microsatellite loci were highly informative and therefore valuable genetic tools to unfold the genetic diversity and population structure of Ethiopian sorghum genotypes. Among the five populations studied, sorghum populations from Amhara and Oromia had the highest genetic variation, indicating that the regions could be perhaps hotspots for useful alleles for the development of better-performing genotypes, and also for designing appropriate germplasm management strategies.
format Online
Article
Text
id pubmed-9860282
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-98602822023-01-22 Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers Mamo, Wubshet Enyew, Muluken Mekonnen, Tilahun Tesfaye, Kassahun Feyissa, Tileye Heliyon Research Article In the tropical and semi-arid regions of Africa, sorghum [Sorghum bicolor (L.) Moench] is mainly grown as a major food security crop. Understanding the extent and pattern of genetic variability is a prerequisite criterion for sorghum improvement and conservation. The genetic diversity and population structure of 100 genotypes of sorghum were profiled using 15 microsatellite loci. A total of 108 alleles, with an overall mean of 7.2 alleles per locus, were produced by all of the microsatellite loci used due to their high polymorphism. Polymorphic information content values ranging from 0.68 to 0.89 indicated that all of the loci are effective genetic tools for analysing the genetic structure of sorghum. Different diversity metrics were used to evaluate genetic diversity among populations, and Nei's gene diversity index ranged from 0.74 to 0.81 with an overall mean of 0.78. Poor genetic differentiation (FST: 0.02; p < 0.0001) was found, where 98% of entire variability was accounted by the within populations genetic variability, leaving only 2.32% among populations. The highest genetic differentiation and Nis's genetic distance were observed between the sorghum populations of the Southern Nation and Nationalities Peoples and Dire Dawa regions. Due to increased gene flow (Nm = 10.53), the clustering, principal coordinate analysis and STRUCTURE analysis failed to categorize the populations into genetically different groups corresponding to their geographic sampling areas. In general, it was found that the microsatellite loci were highly informative and therefore valuable genetic tools to unfold the genetic diversity and population structure of Ethiopian sorghum genotypes. Among the five populations studied, sorghum populations from Amhara and Oromia had the highest genetic variation, indicating that the regions could be perhaps hotspots for useful alleles for the development of better-performing genotypes, and also for designing appropriate germplasm management strategies. Elsevier 2023-01-07 /pmc/articles/PMC9860282/ /pubmed/36691551 http://dx.doi.org/10.1016/j.heliyon.2023.e12830 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Mamo, Wubshet
Enyew, Muluken
Mekonnen, Tilahun
Tesfaye, Kassahun
Feyissa, Tileye
Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers
title Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers
title_full Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers
title_fullStr Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers
title_full_unstemmed Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers
title_short Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers
title_sort genetic diversity and population structure of sorghum [sorghum bicolor (l.) moench] genotypes in ethiopia as revealed by microsatellite markers
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860282/
https://www.ncbi.nlm.nih.gov/pubmed/36691551
http://dx.doi.org/10.1016/j.heliyon.2023.e12830
work_keys_str_mv AT mamowubshet geneticdiversityandpopulationstructureofsorghumsorghumbicolorlmoenchgenotypesinethiopiaasrevealedbymicrosatellitemarkers
AT enyewmuluken geneticdiversityandpopulationstructureofsorghumsorghumbicolorlmoenchgenotypesinethiopiaasrevealedbymicrosatellitemarkers
AT mekonnentilahun geneticdiversityandpopulationstructureofsorghumsorghumbicolorlmoenchgenotypesinethiopiaasrevealedbymicrosatellitemarkers
AT tesfayekassahun geneticdiversityandpopulationstructureofsorghumsorghumbicolorlmoenchgenotypesinethiopiaasrevealedbymicrosatellitemarkers
AT feyissatileye geneticdiversityandpopulationstructureofsorghumsorghumbicolorlmoenchgenotypesinethiopiaasrevealedbymicrosatellitemarkers