Cargando…
Using machine learning to model older adult inpatient trajectories from electronic health records data
Electronic Health Records (EHR) data can provide novel insights into inpatient trajectories. Blood tests and vital signs from de-identified patients’ hospital admission episodes (AE) were represented as multivariate time-series (MVTS) to train unsupervised Hidden Markov Models (HMM) and represent ea...
Autores principales: | Herrero-Zazo, Maria, Fitzgerald, Tomas, Taylor, Vince, Street, Helen, Chaudhry, Afzal N., Bradley, John R., Birney, Ewan, Keevil, Victoria L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860485/ https://www.ncbi.nlm.nih.gov/pubmed/36691609 http://dx.doi.org/10.1016/j.isci.2022.105876 |
Ejemplares similares
-
Clinical Features, Inpatient Trajectories and Frailty in Older Inpatients with COVID-19: A Retrospective Observational Study
por: Osuafor, Christopher N., et al.
Publicado: (2021) -
Anticholinergic burden in older adult inpatients: patterns from admission to discharge and associations with hospital outcomes
por: Herrero-Zazo, Maria, et al.
Publicado: (2021) -
CNest: A novel copy number association discovery method uncovers 862 new associations from 200,629 whole-exome sequence datasets in the UK Biobank
por: Fitzgerald, Tomas, et al.
Publicado: (2022) -
Development and validation of interpretable machine learning models for inpatient fall events and electronic medical record integration
por: Shim, Soyun, et al.
Publicado: (2022) -
The Impact of Automated Electronic Surveillance of Electronic Medical Records on Pediatric Inpatient Care
por: Emmanuel, Jais, et al.
Publicado: (2018)