Cargando…
Photocatalytic VOCs Degradation Efficiency of Polypropylene Membranes by Incorporation of TiO(2) Nanoparticles
A class of serious environmental contaminants related to air, namely volatile organic compounds (VOCs), has currently attracted global attention. The present study aims to remove harmful VOCs using as-prepared polypropylene membrane + TiO(2) nanoparticles (PPM + TiO(2) NPs) via the photocatalytic ga...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860631/ https://www.ncbi.nlm.nih.gov/pubmed/36676857 http://dx.doi.org/10.3390/membranes13010050 |
Sumario: | A class of serious environmental contaminants related to air, namely volatile organic compounds (VOCs), has currently attracted global attention. The present study aims to remove harmful VOCs using as-prepared polypropylene membrane + TiO(2) nanoparticles (PPM + TiO(2) NPs) via the photocatalytic gas bag A method under UV light irradiation. Here, formaldehyde was used as the target VOC. The PPM + TiO(2) NPs material was systematically characterized using various microscopic and spectroscopic techniques, including field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, photoluminescence spectroscopy, and contact angle measurements. These results confirm the successful preparation of PPM + TiO(2) NPs, which can be applied to the degradation of VOCs. Photocatalytic degradation of formaldehyde gas reached 70% within 1 h of UV illumination. The energy bandgap and photoluminescence intensity reductions are responsible for the improved photocatalytic activity. These characteristics increase the charge transport while decreasing the recombination of electron–hole pairs. |
---|