Cargando…

High Resolution Multiview Holographic Display Based on the Holographic Optical Element

Limited by the low space-bandwidth product of the spatial light modulator (SLM), it is difficult to realize multiview holographic three-dimensional (3D) display. To conquer the problem, a method based on the holographic optical element (HOE), which is regarded as a controlled light element, is propo...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Xiujuan, Sang, Xinzhu, Li, Hui, Xiao, Rui, Zhong, Chongli, Yan, Binbin, Sun, Zhi, Dong, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860684/
https://www.ncbi.nlm.nih.gov/pubmed/36677208
http://dx.doi.org/10.3390/mi14010147
Descripción
Sumario:Limited by the low space-bandwidth product of the spatial light modulator (SLM), it is difficult to realize multiview holographic three-dimensional (3D) display. To conquer the problem, a method based on the holographic optical element (HOE), which is regarded as a controlled light element, is proposed in the study. The SLM is employed to upload the synthetic phase-only hologram generated by the angular spectrum diffraction theory. Digital grating is introduced in the generation process of the hologram to achieve the splicing of the reconstructions and adjust the position of the reconstructions. The HOE fabricated by the computer-generated hologram printing can redirect the reconstructed images of multiview into multiple viewing zones. Thus, the modulation function of the HOE should be well-designed to avoid crosstalk between perspectives. The experimental results show that the proposed system can achieve multiview holographic augmented reality (AR) 3D display without crosstalk. The resolution of each perspective is 4K, which is higher than that of the existing multiview 3D display system.