Cargando…
Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO(2) Oxidation
In this study, a kilogram-scale synthesis of a potent TRPV1 antagonist, 1, is described. To synthesize bipyridinyl benzimidazole derivative 1, we have developed a scalable Suzuki–Miyaura reaction capable of providing a key intermediate, 6′-methyl-3-(trifluoromethyl)-2,3′-bipyridine 4, on a kilogram...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860766/ https://www.ncbi.nlm.nih.gov/pubmed/36677895 http://dx.doi.org/10.3390/molecules28020836 |
Sumario: | In this study, a kilogram-scale synthesis of a potent TRPV1 antagonist, 1, is described. To synthesize bipyridinyl benzimidazole derivative 1, we have developed a scalable Suzuki–Miyaura reaction capable of providing a key intermediate, 6′-methyl-3-(trifluoromethyl)-2,3′-bipyridine 4, on a kilogram scale. Then, unlike the existing oxidation reaction pathway, two synthetic routes that can be applied to mass production of bipyridinyl carboxylic acid intermediate 5 or aldehyde intermediate 6 were developed by appropriately controlling the oxidation reaction using a selenium dioxide oxidizing agent. Using our developed synthetic procedure, which includes Suzuki–Miyaura coupling, selective selenium dioxide oxidation, and benzimidazole formation, multi-kilogram-scale bi-pyridinyl benzimidazole derivative 1 can be synthesized. |
---|