Cargando…
An Adaptive Sampling Framework for Life Cycle Degradation Monitoring
Data redundancy and data loss are relevant issues in condition monitoring. Sampling strategies for segment intervals can address these at the source, but do not receive the attention they deserve. Currently, the sampling methods in relevant research lack sufficient adaptability to the condition. In...
Autores principales: | Yin, Yuhua, Liu, Zhiliang, Zhang, Junhao, Zio, Enrico, Zuo, Mingjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860826/ https://www.ncbi.nlm.nih.gov/pubmed/36679762 http://dx.doi.org/10.3390/s23020965 |
Ejemplares similares
-
A Modeling Framework for System Restoration from Cascading Failures
por: Liu, Chaoran, et al.
Publicado: (2014) -
Multi-Fractal Weibull Adaptive Model for the Remaining Useful Life Prediction of Electric Vehicle Lithium Batteries
por: Deng, Wujin, et al.
Publicado: (2023) -
A stochastic hybrid systems based framework for modeling dependent failure processes
por: Fan, Mengfei, et al.
Publicado: (2017) -
A framework for real-time monitoring, analysis and adaptive sampling of viral amplicon nanopore sequencing
por: Munro, Rory, et al.
Publicado: (2023) -
A Smart Framework for the Availability and Reliability Assessment and Management of Accelerators Technical Facilities
por: Serio, Luigi, et al.
Publicado: (2018)