Cargando…
Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors
Alzheimer’s disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer’s treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effec...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860845/ https://www.ncbi.nlm.nih.gov/pubmed/36677616 http://dx.doi.org/10.3390/molecules28020559 |
_version_ | 1784874691691806720 |
---|---|
author | Khan, Shoaib Ullah, Hayat Taha, Muhammad Rahim, Fazal Sarfraz, Maliha Iqbal, Rashid Iqbal, Naveed Hussain, Rafaqat Ali Shah, Syed Adnan Ayub, Khurshid Albalawi, Marzough Aziz Abdelaziz, Mahmoud A. Alatawi, Fatema Suliman Khan, Khalid Mohammed |
author_facet | Khan, Shoaib Ullah, Hayat Taha, Muhammad Rahim, Fazal Sarfraz, Maliha Iqbal, Rashid Iqbal, Naveed Hussain, Rafaqat Ali Shah, Syed Adnan Ayub, Khurshid Albalawi, Marzough Aziz Abdelaziz, Mahmoud A. Alatawi, Fatema Suliman Khan, Khalid Mohammed |
author_sort | Khan, Shoaib |
collection | PubMed |
description | Alzheimer’s disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer’s treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer’s disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1–21) as potent anti-Alzheimer’s agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer’s potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC(50) = 0.10 ± 0.05 µM for AChE) and (IC(50) = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC(50) = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings. |
format | Online Article Text |
id | pubmed-9860845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98608452023-01-22 Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors Khan, Shoaib Ullah, Hayat Taha, Muhammad Rahim, Fazal Sarfraz, Maliha Iqbal, Rashid Iqbal, Naveed Hussain, Rafaqat Ali Shah, Syed Adnan Ayub, Khurshid Albalawi, Marzough Aziz Abdelaziz, Mahmoud A. Alatawi, Fatema Suliman Khan, Khalid Mohammed Molecules Article Alzheimer’s disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer’s treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer’s disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1–21) as potent anti-Alzheimer’s agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer’s potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC(50) = 0.10 ± 0.05 µM for AChE) and (IC(50) = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC(50) = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings. MDPI 2023-01-05 /pmc/articles/PMC9860845/ /pubmed/36677616 http://dx.doi.org/10.3390/molecules28020559 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khan, Shoaib Ullah, Hayat Taha, Muhammad Rahim, Fazal Sarfraz, Maliha Iqbal, Rashid Iqbal, Naveed Hussain, Rafaqat Ali Shah, Syed Adnan Ayub, Khurshid Albalawi, Marzough Aziz Abdelaziz, Mahmoud A. Alatawi, Fatema Suliman Khan, Khalid Mohammed Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors |
title | Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors |
title_full | Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors |
title_fullStr | Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors |
title_full_unstemmed | Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors |
title_short | Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer’s Inhibitors |
title_sort | synthesis, dft studies, molecular docking and biological activity evaluation of thiazole-sulfonamide derivatives as potent alzheimer’s inhibitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860845/ https://www.ncbi.nlm.nih.gov/pubmed/36677616 http://dx.doi.org/10.3390/molecules28020559 |
work_keys_str_mv | AT khanshoaib synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT ullahhayat synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT tahamuhammad synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT rahimfazal synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT sarfrazmaliha synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT iqbalrashid synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT iqbalnaveed synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT hussainrafaqat synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT alishahsyedadnan synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT ayubkhurshid synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT albalawimarzoughaziz synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT abdelazizmahmouda synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT alatawifatemasuliman synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors AT khankhalidmohammed synthesisdftstudiesmoleculardockingandbiologicalactivityevaluationofthiazolesulfonamidederivativesaspotentalzheimersinhibitors |