Cargando…
A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems
Orthogonal frequency division multiplexing (OFDM) has the characteristics of high spectrum efficiency and excellent anti-multipath interference ability. It is the most popular and mature technology currently in wireless communication. However, OFDM is a multi-carrier system, which inevitably has the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860905/ https://www.ncbi.nlm.nih.gov/pubmed/36679746 http://dx.doi.org/10.3390/s23020950 |
_version_ | 1784874707633307648 |
---|---|
author | Tu, Yung-Ping Chang, Chiao-Che |
author_facet | Tu, Yung-Ping Chang, Chiao-Che |
author_sort | Tu, Yung-Ping |
collection | PubMed |
description | Orthogonal frequency division multiplexing (OFDM) has the characteristics of high spectrum efficiency and excellent anti-multipath interference ability. It is the most popular and mature technology currently in wireless communication. However, OFDM is a multi-carrier system, which inevitably has the problem of a high peak-to-average power ratio (PAPR), and s signal with too high PAPR is prone to distortion when passing through an amplifier due to nonlinearity. To address the troubles caused by high PAPR, we proposed an improved tone reservation (I-TR) algorithm to alleviate the above native phenomenon, which will pay some modest pre-calculations to estimate the rough proportion of peak reduction tone (PRT) to determine the appropriate output power allocation threshold then utilize a few iterations to converge to the near-optimal PAPR. Furthermore, our proposed scheme significantly outperforms previous works in terms of PAPR performance and computational complexity, such as selective mapping (SLM), partial transmission sequence (PTS), TR, tone injection (TI), etc. The simulation results show that in our proposed scheme, the PAPR is appreciably reduced by about 6.44 dB compared with the original OFDM technique at complementary cumulative distribution function (CCDF) equal to [Formula: see text] , and the complexity of I-TR has reduced by approximately 96% compared to TR. Besides, as for bit error rate (BER), our proposed method always outperforms the original OFDM without any sacrifice. |
format | Online Article Text |
id | pubmed-9860905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98609052023-01-22 A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems Tu, Yung-Ping Chang, Chiao-Che Sensors (Basel) Article Orthogonal frequency division multiplexing (OFDM) has the characteristics of high spectrum efficiency and excellent anti-multipath interference ability. It is the most popular and mature technology currently in wireless communication. However, OFDM is a multi-carrier system, which inevitably has the problem of a high peak-to-average power ratio (PAPR), and s signal with too high PAPR is prone to distortion when passing through an amplifier due to nonlinearity. To address the troubles caused by high PAPR, we proposed an improved tone reservation (I-TR) algorithm to alleviate the above native phenomenon, which will pay some modest pre-calculations to estimate the rough proportion of peak reduction tone (PRT) to determine the appropriate output power allocation threshold then utilize a few iterations to converge to the near-optimal PAPR. Furthermore, our proposed scheme significantly outperforms previous works in terms of PAPR performance and computational complexity, such as selective mapping (SLM), partial transmission sequence (PTS), TR, tone injection (TI), etc. The simulation results show that in our proposed scheme, the PAPR is appreciably reduced by about 6.44 dB compared with the original OFDM technique at complementary cumulative distribution function (CCDF) equal to [Formula: see text] , and the complexity of I-TR has reduced by approximately 96% compared to TR. Besides, as for bit error rate (BER), our proposed method always outperforms the original OFDM without any sacrifice. MDPI 2023-01-13 /pmc/articles/PMC9860905/ /pubmed/36679746 http://dx.doi.org/10.3390/s23020950 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tu, Yung-Ping Chang, Chiao-Che A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems |
title | A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems |
title_full | A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems |
title_fullStr | A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems |
title_full_unstemmed | A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems |
title_short | A Novel Low Complexity Two-Stage Tone Reservation Scheme for PAPR Reduction in OFDM Systems |
title_sort | novel low complexity two-stage tone reservation scheme for papr reduction in ofdm systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860905/ https://www.ncbi.nlm.nih.gov/pubmed/36679746 http://dx.doi.org/10.3390/s23020950 |
work_keys_str_mv | AT tuyungping anovellowcomplexitytwostagetonereservationschemeforpaprreductioninofdmsystems AT changchiaoche anovellowcomplexitytwostagetonereservationschemeforpaprreductioninofdmsystems AT tuyungping novellowcomplexitytwostagetonereservationschemeforpaprreductioninofdmsystems AT changchiaoche novellowcomplexitytwostagetonereservationschemeforpaprreductioninofdmsystems |